
3GPP TSG CT WG4 Meeting #86bis
C4-187528
Vilnius, Lithuania, 15th – 19th October 2018
was C4-187165
Source:
Huawei, Verizon
Title:
Release 15 Overload Control Mechanism Analysis
Spec:
3GPP TR 29.843 v0.1.0
Agenda item:
6.1.2
Document for:
Agreement
1. Introduction
A detailed analysis of release 15 overload control mechanism needs to be studied. The release 15 overload control algorithm specified in Annex A of TS 29.500 depends on the following parameters:
a. The value of K

b. The size of the window maintained by the client to track the number of requests sent vs number of accepted requests

c. The signaling rate (i.e number of requests per time unit) which determines the moving rate of the window and how soon the overload is detected. This rate also determines the time it takes to detect that overload condition has eased.

d. Number of requests sent

e. Number of requests accepted by the server.

An objective analysis considering various values for the above need to be provided to understand the overload control behavior for various parameter values.
2. Reason for Change
1. Provide an objective analysis of release 15 overload control mechanism by considering various values of K, number of requests sent and number of accepts and the window size.
2. A commentary on whether the findings conclude if R15 mechanism is good or bad is not provided. This will be considered at the time of study conclusion.
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TR 29.843 v 0.1.0.
* * * First Change * * * *

9
Evaluation of Release 15 Overload Control


9.1
Introduction
The release 15 overload control behaviour is based on the HTTP/2 client side doing adaptive throttling of requests based on the number of requests sent and the number requests accepted. This is specified in Annex A of 3GPP TS 29.500 [x2]. The following subclauses analyze the behavior of release 15 mechanism.
9.2
R15 Overload Control Behaviour

The Release 15 HTTP client determines that the HTTP server is overloaded by keeping track of the number of requests sent vs the number of requests accepted. In order to be meaningful in determining the overload condition without false positives, it is suggested to keep a window for tracking the number of requests sent vs number of requests accepted and apply the congestion detection algorithm only after the window is full. 
NOTE:
If the client side overload detection is applied as soon as the first reject is received from the server even before the window is full at the client side, it will result in showing up as number of accepts vs number of requests sent as minimal triggering a false state of congestion at server even though the reject received could be just one off.
The detection is based on the following formula as specified in Annex A of 3GPP TS 29.500 [x2].
[image: image1.png]
where K. determines how agressively the HTTP client detects and applies the adaptive throttling. Assuming the following:

-
Client side signalling rate is X requests per T time units;

-
Window size, W, as a multiple "N" of X (where N can be integer or fractional).
Table 9.2-1 provides a calculation of the number of rejects up to which the client can tolerate before detecting an overload condition at the server, for various values of K and N. The reject tolerance calculation formula is derived as follows:
-
(requests - K * accepts) > 0

-
requests > (K * accepts)

-
requests > (K * (requests - rejects))

-
(requests/K) > (requests - rejects)

Therefore, rejects > (requests - (requests / K)
Using a window size of W, the reject tolerance point at which overload is detected can be written as:

-
CT = Ceiling (W - W/K)
Table 9.2-1: Reject Tolerance Before Detecting Overload by HTTP Client using Release 15 Overload Control Algorithm
	Sl.No
	Value of K
	Number of requests sent within a time interval "t" - X
	Client side window size multiplier N.
Window size W = N times X
	Number of rejects client can tolerate until detecting overload at the server, CT = Ceiling (W-W/K).

	1
	1.2
	1500
	1 (= 1500)
	250

	2
	1.2
	1500
	2 (=3000)
	500

	3
	1.3
	1500
	1 (= 1500)
	347

	4
	1.3
	1500
	2 (=3000)
	693

	5
	1.4
	1500
	1 (= 1500)
	429

	6
	1.4
	1500
	2 (=3000)
	858

	7
	1.5
	1500
	1 (= 1500)
	500

	8
	1.5
	1500
	2 (=3000)
	1000

	9
	1.6
	1500
	1 (= 1500)
	563

	10
	1.6
	1500
	2 (=3000)
	1125

	11
	1.8
	1500
	1 (= 1500)
	667

	12
	1.8
	1500
	2 (=3000)
	1334

	13
	2
	1500
	1 (= 1500)
	750

	14
	2
	1500
	2 (=3000)
	1500

	15
	1.5
	1500
	0.01 (=15)
	5


The following observations can be made from the table:

-
The larger the window size W, the greater is the reject tolerance and hence greater is the time taken to detect overload;

-
The larger the value of K, the greater is the reject tolerance and hence greater is the time taken to detect overload;

-
Very small window sizes could lead to false positives;

-
Once the overload is detected, the number of rejects should fall below the tolerance point CT, in order for the client to detect that overload condition has eased and not apply any client side throttling;
-
Hence the time required to detect that overload condition has eased at the server depends on W and K.
Once a HTTP client detects that the number of rejects is below the tolerance point CT, the client stops throttling and allows all the request messages be sent to the server. However the server may still be in overload, albeit to a lesser degree, and will continue rejecting messages at a lesser rate.
* * * End of Changes * * * *

