3GPP TSG CT4 Meeting #82
C4-181109
Gothenburg, SWEDEN; 22nd – 26th Jan 2018

Source:
Huawei
Title:
Discussion on Service Based Interfaces Overload Control

Agenda item:
6.2.1.3
Document for:
DISCUSSION
1 Introduction

SA2 sent an LS to CT4 (S2-179492) on SBI overload control. A brief summary of the discussion in SA2#123 and SA2#124 that lead to this LS is provided here. The discussion part of this paper does an analysis of how to proceed with the overload control mechanism for service based interfaces.

2 Background

In SA2#123, a discussion paper was submitted on how to proceed with load balancing aspects of service based interfaces (S2-177527). It was discussed in SA2 that in a virtualized deployment, many aspects related to what constitutes the load on an NF cannot be specified by 3GPP. For e.g in a virtualized deployment the load could be due to per VM CPU usage, per VM Memory usage, Hypervisor usage (which is common to many tenant VMs), overall CPU / memory usage of the hardware platform and load on the networking interfaces at a VM level (vNICs) as well as hypervisor / hardware level. Without a proper definition of load in 3GPP, it was felt that load balancing aspects could not be meaningfully defined in 3GPP SA2. On the other hand, overload on the signalling interfaces (i.e Service based interfaces) will be measurable and it is possible to provide mechanisms to mitigate signalling overload. It was decided in SA2#123 to take time till SA2#124 for companies to consider on what needs to be done in Release 15 scope with respect to load and overload control on SBI interfaces.
Correspondingly input contribution S2-178395 was submitted to SA2#124 discussing aspects of what should be considered within scope of 3GPP / Release 15 and which work group should be informed accordingly. Though the paper lists asking CT4 to work on both load and overload control on the “signalling” interfaces, it was decided in SA2#124 that in the official LS to CT4, SA2 will restrict the ask only to “overload” control on the SBI signalling interfaces due to the fact that “load” cannot be meaningfully defined within the remit of 3GPP SA2.

It should be also noted that SA2 discussed the option in NFs providing their load status to NRF and letting other NFs discover the load status via NRF. But this option was not agreed in SA2 for the NRF services, due to the fact that there is no standard way to calculate the load of an NF.

3 Discussion

3.1 On Overload Control

Before exploring potential solutions for overload control, the key decision CT4 has to take is
	Is SBI overload control applicable at a NF service level or NF level or at individual resource level? i.e When overload information is conveyed over SBI is due to the signalling overload experienced by the NF service or the whole NF or is it a overload of too many requests on a particular resource?

In Huawei’s opinion, since RESTFul API based semantics allows operations to be performed at a resource level, 3GPP should specify the signalling overload control mechanism at a finer granular level – i.e at least at a resource collection level. For e.g SMContext is a resource collection.

	Proposal#1: Overload control mechanism shall be specified at a finer granular level – i.e at least at a resource collection level.

Once a decision is reached on the above, the following potential solutions can be explored. Some of these are already briefly mentioned in TR 29.891 sub-clause 6.2.2.2.1.7.
1. Use of HTTP 2.0 SETTINGS / WINDOW_UPDATE frames to do flow control at a connection level (i.e send the SETTINGS / WINDOW_UPDATE on stream ID 0). This mechanism can be used to apply congestion control at a HTTP / TCP connection level. Even though HTTP 2.0 allow flow control at a stream level, it is not expected that there will be long lived HTTP 2.0 streams over service based interfaces. Hence applying flow control at a stream level may not be that useful.
	Proposal#2: In addition to the overload control applied at a resource collection level as proposed in #1, congestion control on the HTTP / TCP connection can also be applied by using the HTTP 2.0 based flow control.

2. Use the conventional API rate limiting mechanisms used by Twitter / GitHub etc using custom headers. However this is not a standard mechanism – but rather a convention followed by many leading REST API providers.

a. X-RateLimit-Limit (Server tells the client (API consumer) the number of allowed requests in the current period

b. X-RateLimit-Remaining (Server tells the client (API consumer) the number of remaining requests in the current period

c. X-RateLimit-Reset (Server tells the client (API consumer) the number of seconds left in the current period (i.e /a/ and /b/ are applicable for the time sent in this header)

d. Use HTTP response code 429 (IETF RFC 6585) whenever a client exceeds the rate limit specified.

e. See https://developer.twitter.com/en/docs/basics/rate-limiting and https://developer.github.com/v3/#rate-limiting for a discussion on these custom headers used by Twitter and GitHub.

3. Use HTTP response code 429 (for too many requests from clients) and / or 503 (service unavailable – when the server is overloaded too much) along with a Retry-After header indicating the client when it can retry a request to the server.

4. In addition to sending HTTP response code 429 as mentioned in /3/, additionally send a payload in the HTTP response that provides details explaining the overload condition as specified in IETF RFC 6585 section 4. However IETF RFC 6585 leaves what to specify in the response payload as open. 3GPP can define their own overload conveyance format using JSON encoding for this.
5. Provide overload conveyance via JSON payload, even during normal HTTP responses (1xx, 2xx responses).

6. For overload caused due to frequent event notifications, the server can mitigate by unsubscribing for certain notifications. The unsubscribe can be done via

a. Explicitly unsubscribing with the notification producer.
b. Unsubscribing the notification delivery end point from NRF so that initial notifications of a particular type will no longer be delivered.

The following table provides a comparison of the various options

	Sl.No
	Description of the Option
	Pros
	Cons

	1
	Use of HTTP 2.0 SETTINGS / WINDOW_UPDATE frames to do flow control at a connection level.
	Standard mechanism supported by IETF RFC 7540
	Lacks mechanism to specify at what level (i.e specific API level or all API) subsequent requests from the client needs to be throttled. The window size advertised by the server is used by the client to for all outbound requests on that HTTP connection.

	2
	Use the conventional API rate limiting mechanisms using X-RateLimit custom headers along with HTTP response code 429
	Convention followed by many leading web services and semantics are widely understood.

Allows rate limit to be specified at a per API level (i.e rate limit can be tied to a particular resource end point the API serves). For example if an SMF is experiencing overload on its SMContext resources only but not its PDUSession resources, the SMF may advertise rate limit towards its consumers only for the APIs operating on SMContext resource.
	Nonstandard mechanism. But if it’s specified in 3GPP specification as an adopted mechanism for the 3GPP interface APIs, then the consumers that use those APIs can abide by the semantics.

	3
	Use HTTP response code 429 / 503 with a Retry-After
	Standard mechanism supported by IETF RFC 6585 and IETF RFC 7231

Allows HTTP servers to request clients to hold back requests towards a specific service / resource level.
	This is a reactive mechanism where the client is asked to hold back requests for the specified time, “After” an overload situation occurs. This does not allow to signal the clients how many requests they can send in a given time to properly pace out the requests.

	4
	Use HTTP response code 429 / 503 along with a JSON payload carrying overload conveyance information.
	Similar to option#2 - Allows overload conveyance and hence resultant rate-limiting / mitigation to be specified at a per API level (i.e rate limit can be tied to a particular resource end point the API serves).
	Same as #2

	5
	Provide overload conveyance via JSON payload even in normal HTTP responses (1xx and 2xx response cases)
	In addition to advantages of #4 – this mechanism allows overload situation to be conveyed even before it occurs thus allowing a graceful mitigation
	Same as #2 and #4

	Proposal#3: For overload control on the service based interfaces, use the above discussion as a starting point to agree on a way forward during CT4#82 so that solutions can be specified from CT4#83 onwards.

	Proposal#4:

Irrespective of which method is chosen from 2 to 5 - upon receiving the overload indication, the HTTP message throttling at a resource collection level shall consider the following:

1. The priority associated with the particular resource (for e.g PDU sessions related to emergency sessions take higher priority, derived from QoS indicators, ARP etc).

2. Prioritization based on ongoing procedures.

The mechanisms identified for prioritization in GTP overload control Diameter overload control in EPC can be leveraged.

3.2 On Load Control
Load control on an NF / NF service is used during initial selection of an NF / NF service instance in order to appropriately distribute the subscriber related sessions based on each’s NF / NF service instances capacity.
SA2 has already specified that NF capacity information is provided by the NF to the NRF in the NF profile. Also the NF profile can be updated by an NF using the Nnrf_NFManagement_Update service operation. With this the NRF can be aware of the available capacity of an NF and can use this information to prepare the appropriate candidate list of the NF to be selected during NF discovery. It should be noted that in EPC, the dynamic change of Load information was signalled via GTP interfaces because the capacity information configured in DNS (in the form of weight) was fairly static. However with NRF that is not the case. The NF profile information can be updated any time by an NF.

Beyond this there is no need to standardize anything with respect to what “load” means and how it is calculated as these cannot be fully defined by 3GPP.
	Proposal#5: Do not define what constitutes “load” on an NF / NF service. Use NF profile information provided to NRF during NF discovery / selection to identify the right candidate NF instance.

4 Way Forward and Proposal

Proposal#1: Overload control mechanism shall be specified at a finer granular level – i.e at least at a resource collection level.

Proposal#2: In addition to the overload control applied at a resource collection level as proposed in #1, congestion control on the HTTP / TCP connection can also be applied by using the HTTP 2.0 based flow control.

Proposal#3: For overload control on the service based interfaces, use the above discussion as a starting point to agree on a way forward during CT4#82 so that solutions can be specified from CT4#83 onwards.

Proposal#4:

Irrespective of which method is chosen from 2 to 5 - upon receiving the overload indication, the HTTP message throttling at a resource collection level shall consider the following:

1. The priority associated with the particular resource (for e.g PDU sessions related to emergency sessions take higher priority, derived from QoS indicators, ARP etc).

2. Prioritization based on ongoing procedures.

The mechanisms identified for prioritization in GTP overload control Diameter overload control in EPC can be leveraged.

Proposal#5: Do not define what constitutes “load” on an NF / NF service. Use NF profile information provided to NRF during NF discovery / selection to identify the right candidate NF instance.

Proposal#6: Provide an early response to SA2 on the agreed way forward indicating that CT4 will keep SA2 informed once the final normative specification is completed.

5 References

[1]
S2-177527, on "TS 23.501/23.502: SBI Load Balancing way forward", SA2#123

[2]
S2-178395, on "Discussion and Way Forward on SBI Load / Overload Control", SA2#124

[3]
S2-179492, on "LS OUT on Overload Control of Service Based Interfaces"
[4]
https://developer.twitter.com/en/docs/basics/rate-limiting
[5]
https://developer.github.com/v3/#rate-limiting
[6]
IETF RFC 6585, "Additional HTTP Status Codes"

