
3GPP TSG CT4 Meeting #79
C4-174216
Krakow, Poland; 21st – 25th August 2017
Source:
Nokia, Alcatel-Lucent Shanghai Bell, China Mobile, Ericsson, Huawei
Title:
Pseudo-CR on Comparison of RESTful and RPC protocol design
Spec:
3GPP TR 29.891 v0.3.0
Agenda item:
6.2.1
Document for:
Decision

1. Reason for Change
The following editor´s note in subclause 6.2.2.4 needs to be resolved:
Editor's Note: the following aspects should be studied and evaluated separately:
- need for a RESTful vs. an RPC approach
- …

2. Proposal

It is proposed to agree the following changes to 3GPP TR 29.891 v0.3.0.
* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 23.008: "Organization of subscriber data".

[5]
3GPP TS 22.261: "Service requirements for the 5G system; Stage 1".

[6]
3GPP TS 23.214: "Architecture enhancements for control and user plane separation of EPC nodes; Stage 2".

[7]
3GPP TS 29.244: "Interface between the Control Plane and the User Plane of EPC Nodes; Stage 3".

[8]
3GPP TS 23.040: "Technical realization of the Short Message Service (SMS) Point to Point (PP)".
[9]
3GPP TS 23.003: "Numbering, addressing and identification"

[10]
IETF RFC 6763: "DNS-Based Service Discovery".
[11]
IETF RFC 7542: "Network Access Identifier".

[12]
3GPP TS 29.335: "User Data Convergence (UDC); User data repository access protocol over the Ud interface; Stage 3".

[13]
IETF RFC 793: "Transmission Control Protocol".

[14]
IETF RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2".

[15]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[16]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[17]
IETF RFC 768: "User Datagram Protocol".
[18]
IETF draft-ietf-quic-transport-02: " QUIC: A UDP-Based Multiplexed and Secure Transport".

[19]
IETF draft-ietf-quic-tls-02: "Using Transport Layer Security (TLS) to Secure QUIC".

[20]
IETF draft-ietf-quic-http-02: "Hypertext Transfer Protocol (HTTP) over QUIC".

[21]
IETF draft-ietf-quic-recovery-02: "QUIC Loss Detection and Congestion Control".

[22]
IETF draft-newton-json-content-rules-08: "A Language for Rules Describing JSON Content".

[23]
IETF RFC 4960: "Stream Control Transmission Protocol".

[24]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[25]
IETF RFC 6733: "Diameter Base Protocol".
[26]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[27]
3GPP TS 29.060: "General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface".
[28]
3GPP TS 29.274: "3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3".

[29]
3GPP TS 38.300: "NR; Overall description; Stage 2." (R3-171329)

[30]
3GPP TS 29.281: "General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U)".

[31]
3GPP TR 38.801: "Study on new radio access technology: Radio access architecture and interfaces".
[xx]
Dissertation of Roy T. Fielding at the University of California at Irvine, USA (2000): "Architectural Styles and the Design of Network-based Software Architectures", Chapter 5 "Representational State Transfer (REST)", https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.
[yy]
Presentation of Leonard Richardson at the QCon Conference. San Francisco (2008): "Justice Will Take Us Millions Of Intricate Moves", Act Three: "The Maturity Heuristic", https://www.crummy.com/writing/speaking/2008-QCon/act3.html.
[zz]
Draft ETSI GS MEC 009 V1.0.1 (2017): "Mobile Edge Computing (MEC); General principles for Mobile Edge Service APIs".
[aa]
Wikipedia article: "Remote procedure call", https://en.wikipedia.org/wiki/Remote_procedure_call.
[bb]
API Design Guide, Google, "https://cloud.google.com/apis/design/"
* * * Next Change * * * *

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1], 3GPP TS 23.501 [2] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1] or 3GPP TS 23.501 [2].

CRUD
Create, Read, Update and Delete

HOL
Head-of-line
HTTP
Hypertext Transfer Protocol

JSON
JavaScript Object Notation
REST
Representational State Transfer
RPC
Remote procedure call
SCTP
Stream Control Transmission Protocol
TCP
Transmission Control Protocol

UDP
User Datagram Protocol
* * * Next Change * * * *

6.2.2.4
Comparison of candidate solutions

Table 6.2.2.4-1 provides a comparison of different candidate solutions based on the requirements and additional evaluation criteria in subclauses 6.2.1.4 and 6.2.1.5 respectively. The colours of the cells provide an evaluation how well the criteria are met (Dark green: Criterion well met. Light green: Criterion mostly met. White: Criterion partially met or no substantial differences between candidate protocols. Orange: Criterion not met.)

Table 6.2.2.4 -1: Comparison of candidate solutions.

	Requirement/ Evaluation Criterion
	TCP/TLS/HTTP2/JSON

(see IETF RFC 793 [13], IETF RFC 5246 [14], IETF RFC 7540 [15], IETF RFC 7159 [16] and IETF draft-newton-json-content-rules [22])
	UDP/QUIC/HTTP2/JSON

(see IETF RFC 768 [17],
IETF draft-ietf-quic-transport [18],
IETF draft-ietf-quic-tls [19],
IETF draft-ietf-quic-http [20],
IETF draft-ietf-quic-recovery [21], IETF RFC 5246 [14], IETF RFC 7540 [15], IETF RFC 7159 [16] and IETF draft-newton-json-content-rules [22])
	SCTP/Diameter

(see IETF RFC 4960 [23], 3GPP TS 33.210 [24] and IETF RFC 6733 [25])

	R1. Support of bidirectional communication
	Service communication is unidirectional, i.e. fully bidirectional communication requires 2 client-server pairs - 1 per direction. However, HTTP2 also offers the possibility of Server Push Notifications via server-initiated streams within one client-server,
	Service communication is unidirectional, i.e. fully bidirectional communication requires 2 client-server pairs - 1 per direction. However, HTTP2 also offers the possibility of Server Push Notifications via server-initiated streams within one client-server,
	Diameter support Request-Answer command pairs in both directions.

	R2. Support of reliable communication
	TCP supports packet retransmission for a reliable communication.
	QUIC supports packet retransmission for a reliable communication.
	SCTP supports packet retransmission and failover to alternate paths for a reliable communication.

	R3. Forward compatibility and ease of upgrade
	HTTP and JSON payload support versioning of service. New IEs added to JSON schema will be ignored. 3GPP defined supported feature mechanism has already been added also to some HTTP/JSON interfaces.
	HTTP and JSON payload support versioning of service. New IEs added to JSON schema will be ignored. 3GPP defined supported feature mechanism has already been added also to some HTTP/JSON interfaces.
	Diameter allows to control whether unknown AVPs will be ignored. 3GPP defined supported feature mechanism is well understood and has been proven to work well.

	R4. Low Response Time
	Radical throughput reduction by TCP in overload and TCP head-of-line blocking are potential issues.

See also A1.
	UDP based transport avoids head of-line blocking. QUIC support multiple streams.

See also A1.
	Performance proven to be appropriate for EPC.

See also A1.

	R5. Scalability
	Potentially limited by high number of TCP connections, but HTTP2 streams allows a reuse of TCP connections between service instances.
	UDP based

QUIC scales to very high number of transport connections (64-bit identifier)
	SCTP associations between Diameter peers can be used for many Diameter sessions.

(3GPP extended Diameter Agent for UE context discovery may impact scalability, but this is considered an architectural issue as similar solutions would be required should other protocols be selected)

	R6. Ease and speed of deployment of network functions and services
	If client authentication requires static configuration is ffs. Otherwise dynamic endpoint discovery and connection establishment is supported.
	If client authentication requires static configuration is ffs. Otherwise dynamic endpoint discovery and connection establishment is supported.
	How well secondary SCTP paths can be supported in dynamic manner (e.g. via DNS) is ffs. Should static configuration be required, Diameter Agents can help.

	R7. Time of Availability of used standards
	Already available.
	Planned completion in November 2018 (according to IETF QUIC working group milestones)
	Already available.

	A1. Resource-efficiency
	Text encoding of HTTP and JSON brings small processing overhead and increases message size.

(But only a small number of HTTP headers will be needed and HTTP2 provides header compression. HTTP2 also supports binary encoding at the HTTP layer, application still provides a text encoded payload)
	Text encoding of HTTP and JSON brings small processing overhead and increases message size.

(But only a small number of HTTP headers will be needed and HTTP2 provides header compression. HTTP2 also supports binary encoding at the HTTP layer, application still provides a text encoded payload)
	Binary encoding at the application layer, but message size increase due to AVP header overhead.

	A2. Reusability of existing 3GPP implementations
	Many libraries to choose from for HTTP/JSON layer. But existing application code based on Diameter will require large adaptations. Also, need to implement HTTP equivalent of Diameter Agent with 3GPP extensions.
	Many libraries to choose from for HTTP/JSON layer, but QUIC support not yet so widespread. Existing application code based on Diameter will require large adaptations. Also, need to implement HTTP equivalent of Diameter Agent with 3GPP extensions.
	Diameter is widely used in EPC

(roaming and non-roaming interfaces

	A3. Minimize number of protocols in network
	Already some limited usage within operators´ networks and for external interfaces at the SCEF (with earlier HTTP versions). HTTP/JSON could be used both for external and internal interfaces.

Legacy interfaces in EPC use different protocols.
	No standardised usage of QUIC within operators´ networks up to now.

However already some limited usage of HTTP/JSON (with earlier HTTP versions) within operators´ networks and for external interfaces at the SCEF. HTTP/JSON could be used both for external and internal interfaces.
	Already widespread usage in and between operator´s networks.

Diameter not supported on external interfaces.

	A4. Congestion, load and overload control
	HTTP/2: multiple streams, each with priority (weight) and dependency (on another streams)

Only limited possibilities to indicate overload via HTTP errors, but no load feedback.

TCP provides end-to-end congestion control, but with radical throughput reduction.
	HTTP/2: multiple streams, each with priority (weight) and dependency (on another streams)

Only limited possibilities to indicate overload via HTTP errors, but no load feedback.

QUIC provides a mechanism for loss detection and overload control, but performance is ffs.
	Congestion control supported by SCTP

Application-Level Load/Overload Control supported by Diameter.

	A5. Support of Security
	TLS for transport level.

Support for application-level authentication and authorization via HTTP header.
	TLS for transport level.

Support for application-level authentication and authorization via HTTP header.
	IPsec for transport level (see 3GPP TS 33.210 [24]).

	A6. Ease of troubleshooting
	Many tools exist to trace/monitor HTTP REST APIs

Distributed logging.
	Many tools exist to trace/monitor HTTP REST APIs, but no widespread support for QUIC so far.

Distributed logging.
	Operators likely already have tools for Diameter.

Centralized logging by Diameter Agent or Distributed logging.

Binary decoding required for troubleshooting,

	A7. Ease of use of 3GPP services from operator owned application functions
	Largest user community for Web services. Already supported by some operator owned application functions (with earlier HTTP versions)
	Large user community for HTTP/JSON Web services, but limited experience for QUIC.
	Mainly 3GPP user community, but already supported by some operator owned application functions. (P-CSCF acting as AF. GCS AS, SCS)

	A8. Support of failover
	Supported by HTTP error codes and HTTP proxies.
	Supported by HTTP error codes and HTTP proxies.
	Supported by error codes and Diameter Agent.

	A9. Support of network entity selection based on UE context information
	Supported, whether new HTTP proxy extensions are required is FFS.
	Supported, whether new HTTP proxy extensions are required is FFS.
	Supported by Diameter Agent with existing 3GPP extensions.

	A10. Ease of traversal of carrier-grade ALG/NAT/firewall
	Possible need to configure operator-grade firewalls to pass TCP/TLS/HTTP.
	Possible need to configure operator-grade firewalls to pass UDP/QUIC.
	Need to configure operator-grade firewalls to pass IPSec, but security gateways reduce the number of required connections (see 3GPP TS 33.210 [24]).

	A11. Impacts to GSMA GRX/IPX
	No HTTP support so far. (e.g. GSMA uses home-routed APN for HTTP-based Ut interface).
	No HTTP/QUIC support so far. (e.g. GSMA uses home-routed APN for HTTP-based Ut interface).
	Existing Diameter support.

	A12. Open and public Source/Standardization body
	yes
	yes
	yes

	A13. Protocol enables stateless operation
	
	
	

	A14. Routing support and related mechanisms
	
	
	

	A15. Error detection and error reporting capabilities
	
	
	

	A16. Sessions multiplexing over a single transport connection
	
	
	

	A17. Well-defined schema and unambiguous interpretation of transported data
	
	
	

Editor's Note:
It is FFS whether Server Push Notifications can be used for Subscribe/Notify pattern.

Editor's Note: the following aspects should be studied and evaluated separately:
- HTTP version
- Transport protocol
- Serialization/encoding protocol (e.g. JSON)
- Interface Definition Language

Editor's Note:
The table above provides a preliminary evaluation that needs to be further assessed.

* * * Next Change * * * *

6.2.2.4
Comparison of RESTful and RPC protocol design
6.2.2.4.1
Characteristics of RPCs

Remote procedure calls (RPCs) do not have a formal definition, but typical characteristics are described in the related Wikipedia article [aa].
RPCs enable inter-process communication where a client entity invokes a certain functionality on a server entity over a network protocol. They typically use a request-response protocol. Unlike the RESTful design, the client typically does not operate on resources, but invokes “functions” or “services".
It should be pointed out that this architectural style is, essentially, how 3GPP has modelled the mobile networks during the last 20 years, with tight coupling of client and servers, and a thorough and detailed protocol specifications mandatory for both ends of each interface.
Many different implementations of RPCs exist that use various protocols for the data transfer and the encoding of the transported data. Among them are also implementations that use HTTP.
Some typical characteristics of RPCs over HTTP are:

-
The POST verbs is used in most cases, sometimes also PUT or GET.
-
The specific operation (service) to invoke may be included as part of the URI.
-
For HTTP GET, the input parameters are coded as URI parameters.
-
For HTTP POST or PUT, the input parameters are coded in the HTTP body.
-
The result (output parameters) is coded in the body of the HTTP response.
Example of an HTTP request/response interaction following an RPC-style (the example represents an interaction from a well-known S6a protocol in the EPC system, just for the purpose to illustrate how a similar interaction would look like in the 5GC):

POST /operations/S6a:Authentication_Information_Request HTTP/1.1
Host: hss.operator.com
Content-Type: application/json
{
 "S6a:input" : {
 "IMSI" : "987654321098765",
 "VPLMNID" : "123456",
 "RequestedEUTRANAuthenticationInfo" : {
 "NumberOfRequestedVectors" : 1,
 "ImmediateResponsePreferred" : true
 },
 "Flags" : "Request_UE_Usage_Type"
 }
}
HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Content-Type: application/json
{
 "S6a:output" : {
 “AuthenticationInfo” : {
 "EUTRANAuthenticationVectors" : [
 {
 "VectorNumber" : 1,
 "RAND" : "NzA5Mzg0MDI5ODA4NDMyMQ==",
 "XRES" : "MjA5Mzg0MDU5ODYwMDM4MQ==",
 "AUTN" : "MTIzNDU2Nzg5MDEyMzQ1Ng==",
 "KASME" : "OTg3NjU0MzIxMDY1NDMyMQ=="
 }
]
 },
 "UE_Usage_Type" : 1
 }
}
6.2.2.4.2
Characteristics of REST
REST (Representational State Transfer) is a set of architectural principles introduced by of Roy T. Fielding in his Dissertation [xx]. Those principles are frequently associated to the Service Oriented Architecture. The principles are:
1.
Client/Server:
Split of responsibilities between client and server. A Client sends a request to the server which returns a response. This allows separating different tasks, e.g. the user interface generation from the data storage, which simplifies the single tasks and enhances portability and scalability.
2.
Stateless:
Each request from client to server must contain all the information necessary to understand the request. Session state is therefore kept entirely on the client. The server does not keep history/memory of previous requests. Possible session state can be transferred by the server to another service such as a database to maintain a persistent state for a period. Different request can be served by different servers, improving reliability and scalability.
3.
Cacheable:
If a response is cacheable, then a client cache is given the right to reuse that response data for later, equivalent requests. This allows to eliminate some interactions, improving efficiency, scalability, and average latency.
4.
Uniform interface:
The interface is based on an identification of resources, and allows a manipulation of resources through representations of these resources. Individual resources are identified in requests, for example using URIs. The resources themselves are conceptually separate from the representations that are returned to the client. When a client holds a representation of a resource, including any metadata attached, it should then be able to use server-provided links dynamically to discover all the available actions and has enough information to modify or delete the resource. Messages should be self-descriptive (e.g. indicate format via MIME type.
The overall system architecture is simplified and the visibility of interactions is improved. Implementations are decoupled from the services they provide, which encourages independent evolvability. The trade-off, though, is that a uniform interface degrades efficiency, since information is transferred in a standardized form rather than one which is specific to an application's needs."
5.
Layered system:
The system is composed of hierarchical layers by constraining component behaviour such that each component cannot "see" beyond the immediate layer with which they are interacting. Intermediary servers may improve system scalability by enabling load balancing and by providing shared caches. The client does not care about how the server provides the response.
6.
Code on Demand (optional):
REST allows client functionality to be extended by downloading and executing code in the form of applets or scripts. This simplifies clients by reducing the number of features required to be pre-implemented.
The practise has shown that those principles are adhered to in varying degrees by APIs that claim to be RESTful. The Richardson maturity model for REST APIs (as originally suggested by Leonard Richardson during a conference presentation [yy], see also Annex C of ETSI GS MEC 009 [zz]) defines the following compliance levels for HTTP-based REST APIs
Level 0:
A single service endpoint (e.g. API) is addressed via URI and HTTP is used as a tunnelling mechanism for remote interaction. RPCs using SOAP are mentioned as an example.
Level 1: Resources:
Individual resources are addressed via URIs. Does not make use of the different HTTP methods, but uses HTTP POST only.

Level 2: HTTP Verbs:
Using the HTTP verbs or methods as intended (e.g. POST, GET, DELETE, PUT) to keep apart different operations on resources.
Level 3: Hypermedia Controls:
Hypermedia indicate to the client what is possible to do with a resource. This helps client developers explore the protocol. The links give client developers a hint as to what may be possible next and allow the server to advertise new capabilities.
NOTE:
The API design guidelines in ETSI GS MEC 009 [zz] recommend compliance with Level 3.
6.2.2.4.3
Degree of Compliance of the stage 2 requirements with RPC
Stage 2 documents requirements in an RPC-like fashion: It defines "service operations" (i.e. actions described in terms of messages and their parameters).
However, stage 2 also requires that "network functions within the 5GC Control Plane shall only use service-based interfaces for their interactions". General characteristics of those "service based interfaces" are described in Clause 7 of 3GPP TS TS 23.501 [2]. Among them are requirements that an NF can expose multiple services and that one service can have several consumers. Stage 3 protocol design for a RPC solution would need to take those requirements into consideration.
In addition to those concrete requirements, stage 2 wording and related argumentation in the preparatory study also signals an intent to align with principles of a service oriented architecture, for which the use of RPCs is prone to result in a proliferation of heterogenous interfaces and methods and lack of reuse.
6.2.2.4.4
Degree of Compliance of the stage 2 requirements with REST

Table 6.2.2.4.4-1 analyses the extent to which REST principles according to Roy T. Fielding`s Dissertation [xx], as outlined in subclause 6.2.2.4.2 are met by the stage 2 architecture and procedures of the 5GC Control Plane.
Table 6.2.2.4.4-1: Compliance of 5G service based architecture with REST principles.

	REST Principle
	Compliance of 5G Service Based Architecture

	1. Client/Server
	Mostly met.
Services are defined in such a way that a provider NFs offers services to consumer NFs.
However, services can include asynchronous notifications from server to client which may need to be modelled as a separate pair of client and server with reversed roles.

	2. Stateless
	Not fully met.
Stage 2 requires that a resource at a particular server, rather than a resource at an arbitrary server, is addressed after a separate server selection via the NRF.
The server also needs to maintain some state to provide asynchronous notifications.
However, there are no stage 2 requirements to maintain a "session" state at the server on many interfaces (e.g. N8, N10, N12, N13), and other interfaces (e.g. N11, N7) can also be designed as session stateless.

	3. Cacheable
	Not fully met.
It is anticipated that most interactions will relate to resources for a particular served UE that can be changing frequently. Caching related responses would offer little benefit.
However, NFs can cache NRF responses.

	4. Uniform interface
	Can be met.
It is largely a stage 3 decision how to document interfaces and whether to document service based interface in a uniform fashion.
Adherence to level 3 of the Richardson maturity model seems possible.

	5. Layered system
	Met.
Consumer NF does not need to be aware of how producer NF provides a response.

	6. Code on Demand (optional)
	Not met.

No related stage2 requirements exist.

Table 6.2.2.4.4-2 analyses the REST compliance level according to Richardson maturity model, as outlined in subclause 6.2.2.4.2, that APIs for service based interfaces of the 5GC Control Plane could achieve.
Table 6.2.2.4.4-2: Achievable Richardson Maturity Levels for Restful APIs in the 5GC Control Plane.

	Level
	Restful APIs in the 5GC Control Plane

	Level 1: Resources
	It is expected that this level can be achieved to a large extent.

Stage 2 requirements are not documented in terms of resources, so additional stage 3 analysis will be required to derive resources.

Some services could map easily to resources, e.g. PDU session as resource for SMF services, or stored data as resource for UDM services.
Designing resources for some other services may require more discussions, e.g.
•
AMF services (N1N2 Message Transfer/Notify, Forward Relocation Request)

•
AUSF services (UEAuthentication Request)

•
5G-EIR services (Check ME Identity)
As a possible remedy, RPC-like resources have been defined in previous Restful APIs, e.g. the "task" resource defined in of ETSI GS MEC 009 [zz].

	Level 2: HTTP Verbs
	It is expected that this level can be achieved to a large extent.

Once resources are defined in a suitable fashion, in most cases applying suitable HTTP methods should be simple.
However, for some special resources mainly the POST HTTP might be suitable, e.g.
•
Notifications could be described as resources posted by the client, but there might not be a requirement to subsequently manipulate those resources with other HTTP methods.
•
Resources representing transferred messages at the AMF would likely also only be posted.

•
There might be a need to pass some parameters when deleting a resource (see e.g. GTP-C DSR/DBR in EPC)
Note: Also for the "task" resource defined in of ETSI GS MEC 009 [zz], only the POST method is supported,

	Level 3: Hypermedia Controls
	It is expected that this level can be achieved to a large extent.
Once resources and HTTP verbs are defined in a suitable fashion, Hypermedia can also be provided.

6.2.2.4.4
Evaluation of RPC
For 5GC, the SBA definitions in stage-2 follow an architectural style that matches much more closely an RPC style of interaction, rather than a REST approach.
It should be noted that a RESTful or RPC approach is not inherently better or worse, and that several of the advantages present in REST, are also achievable by RPC.
Maybe, one of the advantages where REST is clearly superior is the higher degree of decoupling between client and server (allegedly achieved by the use of the HATEOAS principles). However, this characteristic is expected to bring more benefits in a scenario where the SDO defining an API has no, or little, control over the clients of such API; but this is NOT the case of 3GPP 5GC, where both client and servers are internal network entities fully specified, in all detail (including backwards compatibility across releases, feature negotiation mechanisms, protocol extensibility, etc..), by 3GPP; these criteria, however, may be different for interfaces exposed towards external clients of the 3GPP system.
6.2.2.4.5
Evaluation of REST
It is evident that the REST architectural style offers remarkable benefits, and that's why its acceptance in the design of web systems has grown exponentially in the last years. However, it should be also noted that the current architectural definition (stage-2) of the 3GPP 5GC has followed a totally opposite paradigm, mainly based on describing interactions between entities by following a procedure/service invocation, or the triggering of a certain action on the server (very much like a Remote Procedure Call), rather than a resource-oriented architectural definition, which would have been desirable in order to achieve a smooth and straightforward stage-3 protocol specification phase.
This fact does not mean that RESTful protocol design cannot be used, since it is often rather straightforward to map the service invocation described in stage-2 to a RESTful resource manipulation operation; when such mapping is easy or straightforward, it is indeed recommended to follow such design approach.

However, in other cases, mapping the stage-2 service invocation style of interaction to a resource operation is quite awkward and totally counter-intuitive, making it very hard and cumbersome the stage-3 protocol definition, which will affect the understanding of the relationship between stage-3 protocol and stage-2 service operations for implementers, making the system prone to inter-operability problems.
6.2.2.4.6
HTTP APIs types
The API Design Guide from Google [bb] provides general design guidelines for HTTP-based REST APIs and RPC APIs to design simple, consistent and easy-to-use APIs. Table 6.2.2.4.5-1 provides an overview of standard and custom API methods described in this document.
Table 6.2.2.4.5-1: Standard and Custom API methods
	
	Standard API methods
	Custom API methods

	Usage
	API functionality that naturally maps to one of the standard method
(CRUD operations).
	API functionality that does not naturally map to one of the standard methods
(non-CRUD operations)

	Method
	Standard method:
List, Get, Create, Update, Delete
	Custom methods

	Resource/Scope
	Applies to the resource indicated in the URI
	Can be associated with a resource, a collection (see NOTE) or a service

	HTTP mapping
	Standard HTTP method
List: GET <collection URL>

Get: GET <resource URL>

Create: POST <collection URL>

Update: PUT or PATCH <resource URL>

Delete: DELETE <resource URL>
	Custom method included in URI.
Mapped to the most suitable HTTP method (POST typically)

	Parameters
	Parameters/objects in Body or URI (e.g. search parameters in URI)
	Parameters/objects in Body

	Properties
	Large number of resources, only few methods (CRUD) allowed
	Large number of methods permitted

	API examples
	POST /Sessions/

DELETE /sessions/123456
	POST /messages:send
POST /sessions/123456:activate

	Example use cases
	CRUD operations
	Cancel an outstanding operation

Move a resource from one parent to another

Activate/Deactivate a resource

	NOTE:
A collection contains a list of resources of the same type.

6.2.2.4.7
Conclusions
It would be straight forward to design RPCs based on the stage 2 service / service operations documentation, but such a protocol design might not adequately match the expectation motivating the selection of service based interfaces and could also block a future evolution to a larger compliance with a Service Oriented Architecture.
Designing RESTful APIs meeting stage 2 requirements for service based interfaces seems feasible but will require more stage 3 analysis to model resources. RESTful APIs offer the advantage of homogenous, easy to use interfaces, enhanced HTTP visibility (HTTP method accessible e.g. for proxying, logging, monitoring) and a larger decoupling between client and server compared to RPCs. For some operations, an RPC like design might be necessary, but experience exist how to embed such operations in a RESTful framework (see e.g. custom methods associated with a resource in subclause 6.2.2.4.5).
The 5GC manages resources such as UEs, sessions or database records where large number of instances exist and which can be mapped typically to simple resource operations like CRUD.
It is recommended to apply a RESTful framework for the protocol design as follows:

-
service operations that can naturally map to one of the standard method (CRUD operations) should implement the Level 2 of the Richardson maturity model, with standard API methods, whenever possible;
-
other service operations should be designed with custom API methods.
Editor's Note: requirements and benefits of support of the Level 3 of the Richardson maturity model in the 5G Service-Based Architecture are FFS.
* * * End of Changes * * * *

