C4-131346
A Basic Mechanism for Diameter Overload Control
Abstract
When a Diameter server or agent becomes overloaded, it needs to be able to gracefully reduce its load, typically by continuously instructing its clients to reduce sending traffic according to its current capacity to successfully process the traffic. Moreover, when multiple Diameter servers are available to process a transaction, the Diameter clients or Diameter agents must be able to adaptively balance the traffic towards the servers according to their effective load.
This document proposes a concrete mechanism to address the challenge of communicating load and overload state among Diameter nodes, which is applicable with any Diameter application and specifies an algorithm for load abatement to address such overload conditions as they occur. The load abatement algorithm is extensible, allowing for future documents to define additional load abatement approaches.
This document is proposed as an input for the work of the IETF design team that will prepare drafts for Diameter Overload. This document reuses the skeleton and text from draft-roach-dime-overload-ctrl
Status of this Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress”.

This Internet-Draft will expire on xxxxxx.
NOTE: As there are common points with draft-roach-dime-overload-ctrl, this first version of the draft reuses the same lay-out and wording when possible.
Copyright Notice
Copyright © 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1 Mechanism Properties
1.2 Overview of Operation
1.3 Documentation Conventions
2. Overload Scope
3. Diameter Node Behavior
3.1 Negotiation of the support of the mechanism
3.2 Diameter Client and Diameter Server.Behavior
3.2.1 Sending a Request
3.2.2 Receiving a Request
3.2.3 Sending an Answer
3.2.4 Receiving an Answer
3.3 Diameter Agent Behavior
3.3.1 Proxying a Request
3.3.2 Proxying an Answer
3.4 Void

3.5 Load Processing
3.5.1 Sending Load Information
3.5.2 Receiving Load Information
3.6 Session Establishment for Session Groups
4. Loss-Based Overload Control Algorithm
4.1 Overload-Metric values for the 'Loss' Algorithm
4.2 Example Implementation
5. Diameter AVPs for Overload
5.0 Load-Overload-Support AVP
5.1 Load-Overload-Info AVP
5.2 Void
5.3 Overload-Algorithm AVP
5.4 Void
5.5 Overload-Metric AVP
5.6 Period-Of-Validity AVP
5.7 Session-Group AVP
5.8 Load AVP
6. Security Considerations
7. IANA Considerations
7.1 New Diameter AVPs
7.2 Void
7.3 New Diameter Response Code
7.4 Void
7.5 Overload Algorithm Registry
7.6 Void
8. References
8.1 Normative References
8.2 Informative References
A. Acknowledgements
B. Requirements Analysis
C. Extending the Overload Mechanism
C.1 New Algorithms
C.2 New Scopes

1. Introduction

When a Diameter [RFC 6733]server or agent becomes overloaded, it needs to be able to gracefully reduce its load, typically by continuously instructing its clients to reduce sending traffic according to its current capacity to successfully process the traffic. Moreover, when multiple Diameter servers are available to process a transaction, the Diameter clients or Diameter agents must be able to adaptively balance the traffic towards the servers according to their effective load, because load balanced servers are a pre-requisite to effective and least disruptive overload protection measures.
This document defines a mechanism for communicating the load and overload information among Diameter nodes. It also defines a base algorithm for shedding traffic under overload circumstances. The design of the mechanism described in this document allows for the definition of alternate load abatement algorithms as well.

The mechanism proposed in this document is heavily influenced by the work performed in the IETF Session Initiation Protocol (SIP) Overload Control Working Group, and draws on the conclusions reached by that working group after extensive network modeling.
The solution described in this document is intended to satisfy the requirements described in [I-D.ietf-dime-overload-reqs]. As discussed in that document, the intention of a Diameter overload mechanism is to handle overload of the actual message processing portions of Diameter servers. This is in contrast to congestion, which is the inability of the underlying switching and routing fabric of the network to carry the volume of traffic at the volume that IP hosts wish to send it. Handling of congestion is relegated to the underlying transport protocol (TCP or SCTP), and will not be discussed.

Philosophically, the approach in designing this mechanism is based on the prospect that building a base-level, fully compliant implementation should be a very simple and straightforward exercise. In particular, the following principles are proposed:

1. The mechanism is as simple as possible and easy and straightforward to configure.

2. The mechanism does not add any new transactions, messages, or states. It is very easy to implement on existing Diameter stacks. The information is added piggyback on existing applicative Diameter messages, under the fundamental principle that there is no need to exchange load or overload information with nodes that do not send traffic, or very little.

3. The Diameter connection base protocol is unchanged. Diameter connections will continue to be setup as before, with full backward compatibility.

4. The load/overload information is a new simple and fully standard information element (AVP) that can be transported by Diameter applicative messages. It flows naturally from the diameter server function (traffic processing) to the diameter client function (traffic generator), whether Diameter Agent(s) is (are) in the path between them or not, and whether Diameter Agents are aware or not.

5. Diameter Agents in the path are either transparent (to the added load/overload information), or have the opportunity to change this information when this is required or adds value.

This allows the protocol to provide flexibility on how and in which nodes the overload control mechanism is applied. It also leaves many possibilities for extensions
1.1 Mechanism Properties

The core Diameter overload mechanism described in this document is based on interactions between a client and a server with the involvement and participation of Diameter agents when required or when due to a local policy. It follows the principle that the control of the overload mitigation can be as close to the traffic source as possible, so to avoid spreading the problem inside the network and using resources of intermediate nodes in the network for signaling that would anyhow be discarded by the overloaded node.

As, for a given Diameter application, an end Diameter node may send or receive requests, it will act as a client when sending requests or as a server when receiving requests. In this case, the overload control mechanism between two end Diameter nodes MAY be applied and supported independently for each of the two flows of requests.

A Diameter Proxy Agent or Relay Agent receives and forwards requests

The key information transmitted between Diameter peers is the current server load (to allow for better balancing of traffic, so as to prevent overload in the first place) as well as an indication of overload state and severity (overload information). The actual load and overload information related to an application between a server and a client is conveyed as compounds AVP, added to Diameter messages related to this application between this server and this client. As discussed in section 3.2 of [RFC], all CCFs are encouraged to include AVP-level extensibility by inclusion of a "* [AVP]" construct in their syntax definition. A nice property of this mechanism is that the inclusion of load and overload information in existing messages means that the frequency increases with the system loading, allowing faster feedback and thus better regulation.
For the purpose of grouping the several different parts of load/overload information together, this mechanism makes use of a Grouped AVP, called "Load-Overload-Info". The Load-Overload-Info AVP may appear one time in any extensible command.
1.2 Overview of Operation

Clients advertise the support of the overload mechanism to the server. An intermediate Diameter agent in the path between the client and the server may amend this information. For instance, it may advertise to the server the support of the mechanism on behalf of the clients it represents. The server, if it supports the overload control mechanism, confirms its support of the mechanism to the client.

When the overload control is supported, the information sent between nodes includes two key metrics: Load (which, roughly speaking, provides a linear metric of how busy the node is), and Overload-Metric (which is input to the negotiated load abatement algorithm).

In Diameter answers, Load-Overload-Info AVP is simply added. It reflects the originator’s own load and overload state.
Any Diameter agent that receives an answer message may interpret the load/overload information according to its own knowledge (network topology, or information it gathered about other servers for instance) and change it before to pass it back to the requests initiator. Alternatively, the Diameter agent may just pass the information transparently, which would be always the case if not upgraded to support the overload control mechanism.

1.3 Documentation Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Overload Scope
The primary scope of the overload information being sent by an overloaded server is to inform the client and the involved intermediate Diameter agents of the load and overload status of the traffic between one server (a Destination Host AVP) and its clients (each Origination Host AVP used by the clients). In case multiple Diameter applications share the same connection, the load/overload information transported by applicative messages applies to the application they serve.

It is therefore apparent that load/overload information context does not need to be explicitly specified in the Diameter messages since it is implicitly defined by the Diameter transaction itself with its existing attributes: Origin Host AVP, Destination Host AVP and Application.
3. Diameter Node Behavior

The following sections outline the behavior expected of Diameter clients, servers, and agents that implement the overload control mechanism.
In the scope of the following discussion, the Diameter server is the entity that responds the Diameter request, which is sent by the Diameter client. A Diameter agent is in the path between the client and the server. A Diameter node may be at the same time a Diameter client and the Diameter server, but for the sack of simplicity this specified mechanism is defined between one client role and one server role. When a node has both a server and a client role, it needs to implement this mechanism independently for each direction of transactions.
3.1 Negotiation of the support of the mechanism
Negotiation for support of the overload control mechanism takes place between a server and its clients with an involvement of the Diameter agents when needed. The support of the mechanism MUST be indicated in the Diameter requests and answers between a client and a server and it is effective when mentioned in requests and answers. This indication is transferred in a Load-Overload-Support AVP. See section 5.0 for information on the format of the Load-Overload-Support AVP.
If a client does not support the mechanism but is connected to a server via a Diameter agent supporting the mechanism, the Diameter agent, acting as a proxy, MAY indicate this support in the requests it transfers to the servers.
A Diameter agent that does not support the mechanisms MUST leave unchanged the indication of the support of the mechanism in the messages it transfers. Such an intermediate node is neutral and leaves the control of the mechanism to the upstream and downstream nodes.
If the client supports several algorithms, it may indicate them in the requests it sends. The Server, if it supports the mechanism, MUST indicate the algorithm it has selected among those proposed by the client in its answers.
The Load-Overload-Support AVP MAY also contain additional AVPs, as defined in other documents, for the purpose of negotiation extensions to the Overload mechanism.
The Diameter Server or Diameter agent supporting the mechanism that receives a request message from a client first examines it for the presence of a Load-Overload-Support AVP. As long as no such AVP has been received, the server or the intermediate Diameter agent concludes that the overload control mechanism is not supported with this client. No further overload related negotiation is performed, unless the intermediate Diameter agent, acts in place of the client for overload control and adds a Load-Overload-Support AVP to the request sent to the server. If the received request contains a Load-Overload-Support AVP, the server or the intermediate Diameter agent receiving that request message stores that information locally in the overload context of the client. The server then examines the Load-Overload-Support AVP and selects a single algorithm that it MUST indicate in the answer to the request. As the default algorithm support is always possible, the default algorithm MUST be indicated if no other algorithm is selected. The Client and the intermediate Diameter agent accordingly update their contexts related to this server.
An expiration timer indicating the validity period of an overload metric MAY be communicated by the server to the client. If no timer is communicated, the default value of 10 seconds SHALL be used, unless another value is configured configured. An overload metric is said “valid” from the time it is received until the next “relevant” overload metric is received from the same node, the same server (when not the same), and the same application, at which point the fresh received value prevails. The expiration timer is restarted each time a relevant overload metric is received. When this timer expires, the last received overload metric data SHALL be considered outdated and obsolete and the load and overload values reset (zero load and no overload).
3.2 Diameter Client and Diameter Server Behavior
The following sections describe the behavior that Diameter clients and Diameter servers implement for the overload control mechanism. Behavior at Diameter Agents is described in Section 3.3.
To implement overload control, Diameter servers and clients need consider three metrics for the scope described in section 2 for which load/overload information has been received: the overload metric for the scope, the period of validity for the overload metric and the load within the scope.
3.2.1 Sending a Request
This section applies to those requests sent by a client where the use of the overload control mechanism has been retained between a client and a server. Before sending a request, a client needs to select a Diameter server (i.e. a destination host AVP), when several can be used for this transaction. The client MUST use the load metric information in order to make this selection optimally. In this prospect, the client should use an auto-adaptive algorithm to calculate an optimal distribution and apply it for the next valid period.

When multiple DAs can be used toward the same destination server (same destination host AVP), the load metric information received via one DA may be different from the one received via the other one. This would be the case for instance when one DA overrides the load information it gets from the server with it own to take into account its own load. In this case, there will be several load metrics associated with each destination server: One with each possible DA that could be used to reah it. The client should simply consider all those metrics together before to make the selection of (1) which DA to use and (2) which destination server to use.
Once the destination server (and the next hop when different) is (are) selected, the client MUST check if the server to which the request is to be sent is overloaded. If yes, the Client MUST execute the selected overload algorithm with the overload info it has previously received from the server to decide to send or not the request.
The client sends, drops, queues, or otherwise modifies handling of the request according to the negotiated overload control algorithm, using the Overload-Metric it has previously received from the server as input to the algorithm.

When determining which requests are impacted by the overload control algorithm, the client MAY take into account the type of message being sent and its contents, the priority of the message, the level of gravity of the overload etc. The exact rules for such prioritization will likely vary from application to application. The authors expect that specifications that define or specify the use of specific Diameter Applications may choose to formally define a set of rules for such prioritization on a per-Application basis.
Nevertheless, the overload traffic shedding request MUST be in average fulfilled by the client: the content or type of request cannot be an excuse to be exempted, even partially. For example, if a peer requests a 50% decrease in sent traffic using the "Loss" algorithm (see Section 4), but the traffic that the sending node wishes to send consists 65% of traffic that the sender considers critical, then the sender is nonetheless required to drop some portion of that critical traffic (e.g., it may elect to drop all non-critical traffic and 23% of the critical traffic, resulting in an overall 50% reduction).

3.2.2 Receiving a Request
When a server and a client have determined that this overload mechanism is supported between them, the server MUST always provide a load metric information in some or all of the transaction answers. The load metric indicates the ratio of transaction processing capability that it currently delivers, as a percentage of its maximum nominal capacity. This allows the clients to make the best choice when selecting the server. It may also optionally allow the clients to get prepared for shedding.

When a server determines that the offered traffic is growing (or is about to grow) beyond its nominal capacity, it MUST return in each response an overload metric that will instruct the clients to reduce the offered load accordingly. The shedding instruction SHOULD be auto-adaptive (constantly adapted from its previous value by continuously comparing the offered load to the nominal capacity and aggravating or easing the requested shedding accordingly).
In this overload protection mode, when a server receives a request from a client that does not support this overload control mechanism, it should apply itself the traffic reduction that it would otherwise be demanded to compliant clients. In this respect, the server MAY take into account the type of the received message, the priority of the message, the level of gravity of the overload etc to decide to process or not the received message.
In any case, when a server decides to not process a request, but is still able to answer, it SHOULD answer with an error that MUST be DIAMETER_IN_OVERLOAD, in addition to the overload metric.
When a Server is about to become so overloaded that its capability to answer messages or its integrity is compromised, it is may start to shed traffic itself, including traffic from clients that do support the overload control mechanism. In this case, and similarly, the server MAY take into account the type of the received message, the priority of the message, the level of gravity of the overload etc to decide to process or not the received message and should answer with an error that MUST be DIAMETER_IN_OVERLOAD, in addition to the overload metric.
3.2.3 Sending an Answer
This section applies to those answers sent by a server where the use of the overload control mechanism has been retained between a client and this server.

When sending an answer, a server MUST insert a Load-Overload Info AVP (see Section 5.1) into the answer. This Load-Overload Info AVP is related to the traffic of the application requests between the server and the client to which the answer refers.

The Load-Overload-Info AVP in the answer MUST contain an Overload-Metric (see Section 5.5), indicating whether (and to what degree) the server is overloaded for the overload scope.
Each Load-Overload-Info AVP MUST also contain a Load AVP, indicating the server's load level within the context of the overload scope. See Section 3.5.1 for details on generating this load metric. Note that a server's load may be the same for all the clients of a given application to which the server sends this load information
3.2.4 Receiving an Answer
A client that receives an answer from a server with which the support for the overload control mechanism for an application has been negotiated, will extract the Load-Overload-Info AVP from the answer and use it to update the overload scope entry for this server, with the overload metric, and load information. The message is then processed as normal.

3.3 Diameter Agent Behavior
This section discusses the behavior of a Diameter Agent acting as a Proxy or Relay.
A Diameter agent not supporting the mechanism, transparently conveys the Load-Overlod-Info AVP from the received message into the message it forwards.
3.3.1 Proxying a Request
A Diameter agent that is not itself in an overload situation, and that receives requests from clients that have negotiated the support of the overload control mechanism with the server SHOULD forward the received request without applying overload control, except if a local policy applies, in situation such as (for instance) when the Diameter Agent hides the server topology to the clients as described hereafter.

A Diameter proxy agent MAY hide the server topology to the clients. In this case the client only knows the destination realm to be used and is not aware of which server will be handling the request. In such situation, the Diameter proxy agent selects the destination server, and SHALL therefore apply the optimal distribution strategy as described in 3.2.1, using the load metrics received from the servers. In addition, the Diameter proxy SHOULD also apply (itself) the shedding operation requested by the selected server and decide to not process further the request. In this case it MUST return to the client an answer message containing an error which MUST be DIAMETER_IN_OVERLOAD. In case the client supports the overload mechanism, the Diameter proxy agent should also add in the answer (whether the request was forwarded to the server or locally shed) an overload metric that provides shedding and distribution instruction to the client for this particular destination realm.

When the Diameter proxy receives from the client a request that specifies the destination host AVP, and when the client supports this overload mechanism, the proxy SHOULD NOT shed the load itself, since the client was supposed to do that already. However, the agent MAY look up and use the load and overload information provided in the responses (from the servers) to update its view on the server’s situation, in order to provide the best behavior when the client only provides the destination realm, as described above.
When the Diameter proxy receives from the client a request that specifies the destination host AVP, and when the client does not support this overload mechanism, the proxy SHOULD shed itself, on behalf of the client. In this case, for requests that it elected to not forward, it MUST return to the client an answer message containing an error which MUST be DIAMETER_IN_OVERLOAD.

Case when the DA(s) is (are) also overloaded (or approaching overload)

It is expected that the processing/forwarding capacity of the DAs that are in the path between the clients and the servers is more than enough to allow the clients to benefit from the full capacity of the servers with no traffic restriction, but the case where some DAs get overloaded cannot be excluded. Therefore, it is important that the DAs themselves can report their own load and overload metrics to the clients, or to any other DA at the client side of the transaction. This information will be used by the nodes at the client side of the DA to distribute adaptively the load (allowing more requests to flow via less loaded DAs) and to shed.

Therefore, Diameter agent should always add in the responses to client side nodes that support this overload mechanism their own load and overload information, by replacing the existing information (they got from the server side) with their own, when it is more constraining, because that’s the right information to be considered by client’s side nodes when this DA is selected to reach this destination host. The reason why the information can just be “replaced” (and no additional information element is needed) is that it does not matter to the client if the load or overload information is due to the DA itself or due to a node on the server side of the DA.
Moreover, when a DA gets load and overload information for one given destination host from several different server’s side DAs, then is should retain the less constraining value from those DAs (before to apply the most constraining with its own value as explained above), because through this DA, there is a way to “use” the less constrained path toward this destination host.
Otherwise, when the DA becomes overloaded to the point that its capability to answer and forward messages or its integrity is compromised, it may start to shed traffic itself, as described at the end of section 3.2.2.
 3.3.2 Proxying an Answer
A Diameter agent that is not itself in an overload situation and that receives answers from servers that have negotiated the support of the overload control mechanism with clients SHOULD forward the received answer with the Load-Overload-Info AVP unchanged except if a local policy applies, in situation such as (for instance) when the Diameter Agent hides the server (or other nodes at the server’s side) topology to the clients, or if its own load or overload situation becomes a constraining factor for selecting this agent.
A Diameter proxy agent that hides the server topology to the clients and that is not itself in an overload situation, SHOULD process the answers it receives from the servers as described in section 3.2.4. The Load –Overload-Info AVP inserted in the forwarded answer to the client should contain an overload metric corresponding to the (whole) realm to which the topology is hidden.
A Diameter agent interfacing clients that do not support the overload control mechanism and that has negotiated the overload control mechanism with the nodes at the server’s side as described in section SHOULD processes the answers received from the server as described in section 3.2.4. The Diameter Agent then normally forwards the answer to the client.
3.4 Void

3.5 Load Processing
In systems in which multiple servers (or nodes) can be selected to process the same request, it is very important to balance the load so that servers in this cluster are roughly equally loaded, and thus would go in overload approximately simultaneously. This approach has three fundamental advantages:

1) It will avoid any overload situation as long as there is some processing capacity left within the cluster. So in essence, balancing the load provides a much higher capacity.
2) Under normal traffic, it provides a much better resilience to peak stress traffic, as load is balanced.
3) It removes the need to “re-direct” request to “other less loaded nodes” within the same cluster, which simplistic feature tends to abruptly swing the load back and forth between servers and, when near nominal capacity can sometime needlessly collapse the whole cluster.
Therefore, the overload mechanism includes the ability to convey node load information.

Semantically, the Load information sent by a Diameter node indicates the current utilization of its most constrained resource. It is a linear scale from 0 (not loaded) to 65535 (loaded at nominal capacity).

It is critical to distinguish between the value conveyed in the Load AVP and the value conveyed in the Overload-Metric AVP. The Load AVP is computed and used independent of the Overload-Algorithm selected for a connection, while the Overload-Metric is meaningful only in the context of the selected algorithm. Most importantly, the Load information never has any impact on the behavior specified in the overload algorithm. If a node reports a Load close to 65535, but the Overload-Metric does not indicate any need to apply the selected overload control algorithm, then the sender MUST NOT apply the selected overload control algorithm. Conversely, if a node is reporting an Overload-Metric that requires the recipient to take action to reduce traffic, those actions MUST be taken, even if the node is simultaneously reporting a Load value close to 0 (although this would not be likely
3.5.1 Sending Load Information
Diameter nodes implementing the overload mechanism described in this document MUST include a Load AVP (inside a Load-Overload-Info AVP) in every Diameter answer message related to the overload scope when the use of the overload control mechanism has been negotiated. Note just like with the overload metric, this requirement does not necessitate calculation of the Load metric each time a message is sent; the Load value may be calculated periodically (e.g. every 100 ms), and used for every message sent until it is recalculated.

The algorithm for generation of the load metric is a matter of local policy at the Diameter node, and may vary widely based on the internal software architecture of that node.
For advanced calculations of Load, anticipated inputs to the computation may include any resource that is limited and consumed by Diameter transactions such as CPU utilization, network utilization, processor interrupts, I/O throughput, and internal message queue depths.

To prevent rapid fluctuations in the load metric, nodes SHOULD report a rolling average of the calculated load rather than the actual instantaneous load at any given moment.

3.5.2 Receiving Load Information
While sending load information is mandatory, the actual processing of load information at a recipient is optional. Ideally, recipients will use the load information as input to a decision regarding which of multiple equivalent servers to use when initiating a new connection. Recipients may choose to update load information on receipt of every message; alternately, they may periodically "sample" messages from a host to determine the load it is currently reporting.
It is suggested to use an auto-adaptive approach in which for a given server’s cluster, an optimal distribution is regularly calculated (every second for instance) and then distribution parameters are adjusted each second according to the most recent load values received from each servers.

3.6 Session Establishment for Session Groups
FFS

4. Loss-Based Overload Control Algorithm
This section describes a baseline, mandatory-to-implement overload control algorithm, identified by the indicator "Loss". This algorithm allows a Diameter peer to ask its peers to reduce the number of requests they would ordinarily send by a specified percentage. For example, if a peer requests of another peer that it reduce the traffic it is sending by 10%, then that peer will redirect, reject, or treat as failed, 10% of the traffic that would have otherwise been sent to this Diameter node.
4.1 Overload-Metric values for the 'Loss' Algorithm

A Diameter server or an intermediate Diameter agent entering the overload state for the overload scope that it uses with the clients will calculate a value for its Overload Metric, in the range of 0 to 100 (inclusive). This value indicates the percentage traffic reduction the Diameter node requires the senders of requests (client or an intermediate Diameter agent) to implement. The computation of the exact value for this parameter is left as an implementation choice at the sending node. It is acceptable for implementations to request different levels of traffic reduction to the different senders of requests according to local policy at the Diameter node. These Overload Metrics are then communicated to the senders of requests using the Overload-Metric AVP in answers sent by this node.
Recipients of Overload-Metric AVPs where the "Loss" algorithm has been specified MUST reduce the number of requests sent in the corresponding scope by that percentage, either by redirecting them to an alternate destination, or by failing the request. For a Diameter Agent, these failures are indicated to the originator of the request by sending a DIAMETER_IN_OVERLOAD response (see Section 7.3). For diameter clients, these failures cause the client to behave as if they received a transient error in response to the request.
It is acceptable, when implementing the "Loss" algorithm, for the reduction in transactions to make use of a statistical loss function (e.g., random assignment of transactions into "success" and "failure" categories based on the indicated percentage). In such a case, the actual traffic reduction might vary slightly from the percentage indicated, albeit in an insignificant amount.

The selection of which messages to withhold from sending does not need to be arbitrary. For example, implementations are allowed to distinguish between higher-priority and lower-priority messages, and drop the lower-priority messages in favor of dropping the higher priority messages, as long as the total reduction in traffic conforms to the Overload-Metric in effect at the time. The selection of which messages to prioritize over others will likely vary from application to application (and may even be subject to standardization as part of the application definition). As examples, the prioritization may apply to messages related to procedures of an application having a higher priority or to messages related to high priority users or to emergency. Another example of such a prioritization scheme would be to treat those messages that result in the creation of a new session as lower priority then those messages sent in the context of an established session.

4.2 Example Implementation

TBC

5. Diameter AVPs for Overload
NOTE: THE AVP NUMBERS IN THIS SECTION ARE USED FOR EXAMPLE PURPOSES ONLY. THE FINAL AVP CODES TO BE USED WILL BE ASSIGNED BY IANA DURING THE PUBLICATION PROCESS, WHEN AND IF THIS DOCUMENT IS PUBLISHED AS AN RFC.

	Attribute Name
	AVP Code
	Sec. Def.
	Data Type
	MUST
	MUST NOT

	Load-Overload-Support
	xxxx
	5.0
	TBD
	
	M,V

	Load-Overload-Info
	1600
	5.1
	Grouped
	
	M,V

	Overload-Algorithm
	1602
	5.3
	Enumerated
	
	M,V

	Overload-Metric
	1604
	5.5
	Unsigned32
	
	M,V

	Period-Of-Validity
	1605
	5.6
	Unsigned32
	
	M,V

	Load
	1607
	5.8
	Unsigned32
	
	M,V

5.0 Load-Overload-Support AVP

The Load-Overload-Support AVP (AVP code xxxx) is of type TBD, and is used to indicate if the overload control mechanism will be used and with which algorithm.

5.1 Load-Overload-Info AVP
The Load-Overload-Info AVP (AVP code 1600) is of type Grouped, and is used as a top-level container to group together information pertaining to load and overload information. Every Load-Overload-Info AVP MUST CONTAIN one Overload-Metric AVP.

The Grouped Data field of the Load-Overload-Info AVP has the following CCF grammar:

 < Load-Overload-Info > ::= < AVP Header: 1600 >
 < Overload-Metric >
 [Load]
 * [AVP]

5.2 Void
5.3 Overload-Algorithm AVP
The Overload-Algorithm AVP (AVP code 1602) is of type Uint32, contains a bit map and is used to negotiate the algorithm that will be used for load abatement. The Overload-Algorithm AVP MAY appear in any message types.. Additional values can be registered by other documents; see Appendix C.1. Initial values for the bitmap are as follows:
	Scope
	Bitmask
	Scope

	1
	0x0000000000000001
	Loss

5.4 Void
5.5 Overload-Metric AVP
The Overload-Metric AVP (AVP code 1604) is of type Unsigned32, and is used as input to the load mitigation algorithm. Its definition and interpretation is left up to each individual algorithm, with the exception that an Overload-Metric of "0" always indicates that the node is not in overload (that is, no load abatement procedures are in effect) for the indicated scope.
When it is used with the Loss algorithm, the allowed values are described in section 4.1.

5.6 Period-Of-Validity AVP
The Period-Of-Validity AVP (AVP code 1605) is of type Unsigned32, and is used to indicate the length of time, in seconds, the Overload-Metric is to be considered valid (unless overridden by a subsequent Overload-Metric in the same scope).If the Period-Of-Validity AVP has not been transmitted, a default timer is used.
5.7 Session-Group AVP
FFS

5.8 Load AVP
The Load AVP (AVP code 1607) is of type Unsigned32, and is used to indicate the load level of the scope in which it appears. See Section 3.5 for additional information.

6. Security Considerations

A key concern for recipients of overload metrics and load information is whether a node from which the information has been received is authorized to speak for the indicated scope related to the Load Overload information for a given application between a client and a server. . There is somepotential for a node to maliciously or accidentally reduce traffic to a third party. Implementations may choose to ignore indications from hosts which do not clearly have authority over the indicated scope.
On the other hand, multiple nodes that are under the same administrative control (or a tightly controlled confederation of control) may be implicitly trusted for that domain of control. Implementations are encouraged to allow configuration of inherently trusted servers to which the foregoing restrictions are not applied.

Open Issue: There are almost certainly other security issues to take into consideration here. For example, we might need to include guidance around who gets to see our own load information, and potentially changing the granularity of information presented based on trust relationships.
7. IANA Considerations

This document defines new entries in several existing IANA tables. It also creates two new tables.

7.1 New Diameter AVPs

The following entries are added to the "AVP Codes" table under the "aaa-parameters" registry.

	AVP Code
	Attribute Name
	Reference

	xxxx
	Load-Overload-Support
	RFC xxxx

	1600
	Load-Overload-Info
	RFC xxxx

	1602
	Overload-Algorithm
	RFC xxxx

	1604
	Overload-Metric
	RFC xxxx

	1605
	Period-Of-Validity
	RFC xxxx

	1607
	Load
	RFC xxxx

7.2 Void
7.3 New Diameter Response Code
The following entry is added to the "Result-Code AVP Values (code 268) - Transient Failures" table in the "aaa-parameters" registry:

	AVP Values
	Attribute Name
	Reference

	4128 [actual value TBD]
	DIAMETER_IN_OVERLOAD
	RFC xxxx

7.4 Void
7.5 Overload Algorithm Registry

This document defines a new table, to be titled "Overload-Algorithm Values (code 1602)", in the "aaa-parameters" registry. Its initial values are to be taken from the table in Section 5.3.

New entries in this table follow the IANA policy of "Specification Required." (Open Issue: The WG should discuss registration policy to ensure that we think this is the right balance).

7.6 Void
8. References

8.1 Normative References
TBC
8.2 Informative References
TBC
A. Acknowledgements

TBC

B. Requirements Analysis

This section analyzes the mechanism described in this document against the set of requirements detailed in [I-D.ietf-dime-overload-reqs].
TBC
C. Extending the Overload Mechanism
This specification includes two key extension points to allow for new behaviors to be smoothly added to the mechanism in the future. The following sections discuss the means by which future documents are expected to extend the mechanism.

C.1 New Algorithms
In order to provide the ability for different means of traffic abatement in the future, this specification allows for descriptions of new traffic reduction algorithms. In general, documents that define new algorithms need to describe externally-observable node behavior in sufficient detail as to allow interoperation.

At a minimum, such description needs to include:

1. The name and IANA-registered number for negotiating the algorithm (see Section 5.3).

2. A clear description of how the Overload-Metric AVP is to be interpreted, keeping in mind that "0" is reserved to indicate that no overload condition exists.

3. An example, proof-of-concept description (preferably in pseudo-code) of how nodes can implement the algorithm.

New algorithms must be capable of working with all applications, not just a subset of applications.

C.2 New Scopes
FFS

