
3GPP TSG CT WG4 Meeting #39bis
C4-081500
Zagreb, Croatia, 23rd – 27th June 2008

Source:
Alcatel-Lucent
Title:
pCR on 29.864 Study on IMS Application Server Service Data Descriptions for AS interoperability; TR 29.864 Section 5 Clean-up
Spec:
3GPP TR 29.864 v1.0.0
Agenda item:
6.2.2
Document for:
Decision

1. Introduction
Contributor cleanup is applied in these sections.
2. Reason for Change
Editorial and clarification
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TR 29.864.
* * * First Change * * * *

5
Mechanisms for Transfer of Defined Service Data between Application Server and the HSS

5.1
Introduction

There are several forms in which the service data could be transferred between the AS and HSS over Sh interface. The data sent may be in a compressed form or not depending on the nature of compressions algorithm supported by HSS and AS.

Definition refers to a set of attributes supporting application functionality and how they are to be commonly interpreted or encoded by a compliant AS. Compression, defines the mechanism of reducing the definition to transmit and store smaller versions of the data definition.

5.2
Defined features

The data to support Telephony application server features are identified in the following list taken from 3GPP TS 22.173 [3]. The feature list may be expanded in the future, but initially will contain the following capabilities:

· Originating Identification Presentation (OIP)

· Originating Identification Restriction (OIR)

· Terminating Identification Presentation (TIP)

· Terminating Identification Restriction (TIR)

· Malicious Communication IDentification (MCID)

· Anonymous Communication Rejection (ACR)

· Communication DIVersion (CDIV)

· Communication Waiting (CW)

· Communication HOLD (HOLD)

· Communication Barring (CB)

· Completion of Communications to Busy Subscriber (CCBS)

· Completion of Communications No Reply (CCNR)

Editor's Note: Beware of CCNR inputs in 22.173 at a future date.

· Message Waiting Indication (MWI)

· CONFerence (CONF)

· Three-Party (3PTY)

· Advice Of Charge (AOC)

· Explicit Communication Transfer (ECT)

· Reverse charging

· Closed User Group (CUG)

· Flexible Alerting (FA)
· Customized Alerting Tone (CAT)
Conveying this data from an application server to the HSS requires definition of the details for each of the features and is implemented within the application server.

5.3
Data sent over Sh in an uncompressed format

[image: image21.emf]
Figure 5.3.1: AS service data exchanged in uncompressed format

Tradeoffs between transmission rate and compression/decompression processing time should be considered. It is possible to operate an interface at a higher data rate by transmitting uncompressed data, This would be the case if transmitting compressed data required significant overhead time due to the invocation of the compression/decompression component. Transmitting uncompressed data may allow for faster session processing (system does not need to employ conversion algorithms before operating on the data) where the size of data being transferred over the interface is not critical. This compression/decompression activity not be required if the AS stores this data in an uncompres form (e.g. _xml documents).

5.4
Data sent over Sh in compressed format

[image: image2.emf]

Receiving

Storing

Sh Interface

HSS SIP - AS

SIP - AS

Figure 5.4.1: AS service data exchanged in compressed format

This mechanism works on the basis that the storing AS and the AS recalling data understand the encoding schemes and compression algorithm. Compression is useful in order to save memory space and transmission bandwidth. The possible fallout may include excessive processing which may cause problems with certain applications. The AS could carry out this negotiation through transparent data content to indicate upon a commonly supported compression/decompression algorithm. An alternative method could be the use of O&M to ensure a common compression/decompression algorithm

The disadvantage of this proposal is that they could involve heavy standardisation work to co-ordinate compression/decompression algorithms across all Application Servers.

5.5
Location of compression options

There are two alternatives for the location of compression/decompression algorithms.

· Option A: compression/decompression algorithms at AS

This allows easy extension of XML increasing overall network efficiency. However to satisfy, AS interoperability requirement this would require heavy standardisation efforts to include different compression/decompression algorithms. This option is applicable to Figure 5.4.1
· Option B: compression/decompression algorithms at HSS.

[image: image3.emf]

Figure 5.5.1: HSS storage of AS service data

This option is independent of the nature of data exchanged over the Sh interface. In this option the compression/decompression algorithm could operate on data received at the HSS over the Sh. The HSS could have knowledge of the data being received and could choose a compression algorithm based upon the type of data, or instance of data being transmitted. This is not advisable, as the App Server and HSS would need to be coordinated requiring a standardization/definition exercise for each applicationserver or application server data increment. This is contrary to our rapid AS development goal in IMS.

In conclusion, the compression/decompression algorithms stored by HSS do not influence the nature of data sent over the Sh interface. Different compression/decompression and formats of storage mechanisms are HSS implementation specific and out of scope of this WID.

5.6
Information Content vs. representation

To facilitate centralized storage, the information required to create basic telephony services must be conveyed to the HSS. To facilitate session processing, it must be conveyed to the requesting application server. This information is stored co resident with session processing in the active application server. This co-resident version is considered a cache. The master copy is viewed as the version stored in the HSS.

One application server goal is to allow higher subscriber numbers/capacity per application server. This goal requires architecture of this data to be extremely compact, regardless of the size of data transmitted from/to the centralized storage facility in the HSS, this form can be retained after registration. Increased numbers of subscribers that are concurrently cached at an application server drives capacity.

The HSS is impacted with increased size of this transferred data. Available memory in an HSS is allocated to each subscriber. Higher memory use per subscriber inversely affects the HSS capacity. For this reason, the HSS will consider compression of the stored data if that is practical.

With transparent data, the HSS is not aware of the content of the data. If the HSS were aware of content, then it could use this knowledge to reduce the size of the stored image. Since it is not, only generic compression techniques are available for this use.

If extensibility mechanisms such as XML are used to store data in an HSS, the expected increase in transmitted then stored information between the HSS and the application server could be between 30 and 100. A typical example showing the inefficiency computation for XML when it is used to represent call forwarding busy follows. The XML shown is a representation of data related to call forwarding Busy.

[image: image4.wmf]

 <CallForwardingBus

y Assigned="1" Activated="0" PerPuid="0">

<ForwardToType

>FORWARD_TO_DN</ForwardToType>

 <ForwardToDNAllowed>0</ForwardToDNAllowed>

 <ForwardToDN>+19742400002</ForwardToDN>

 <EditPermissions>EDIT_FULL</EditPermissions>

</CallForwardingBusy>

[image: image5.wmf]

Notice that t

he information contained within the

24

6

characters (not counting 10 spaces) could be contained within

Digits

(12)

+19742400002

Binary flags

(3)

Call forwardingBusy

Assigned="1"

Activated="0"

PerPuid="0"

Enumerations

(2)

ForwardToType

FORWA

RD_TO_DN

EditPermissions>

EDIT_FULL

Total Bits

(12

*4)+3+(2*4)=

59

 bits

(BINARY)

vs.

24

6

x

8 =

1968

(XML)

XML

Expansion Ratio

 =

1968

 /

59

~

=

33

.

Derating the application server and HSS capacities to allow man-readable extendibility is a business case to be considered for the AS, and HSS vendors. Ultimately increased hardware and architecture costs will be passed to the service providers. Additionally, costs related to this architecture impact the AS-HSS IP network as well as internal IP networks within these elements. This is because the increase in size translates to an increase in LAN/WAN bandwidth among these elements. A more compact format should be specified.
5.7
Evaluation of compression options

To overcome the cost of the XML size expansion, we consider options for compression algorithms that would operate on the XML bodies, and also consider where they could be applied. Figure 5.7.1 indicates three alternative locations for compression execution.

One option for compression is within the HSS complex, closest to the data storage. This would allow varying compression algorithms to be used in the network, and would leave the Transparent Data compression task and algorithm to be specified at each database. This is shown as option 3.

Another option (option 2) would be to identify a compression algorithm that would operate on Data received at the HSS. The HSS could have knowledge of the data being received (XML, encoded binary, .wav, text) and could choose a compression algorithm based upon the type of data, or instance of data being transmitted. This could even be determined and pre-configured per ServiceIndication. This begins to share specific contents of the HSS transparent Data in order to drive network efficiencies. As the ultimate progression of this HSS compression, the HSS may require specific knowledge of the XML contents so that it may efficiently store the received data. Potentially, this could require development on the HSS, or additions to HSS capabilities to allow a service to load and store a schema so that compression was available.

[image: image6]
Figure 5.7.1: Compression Algorithms

Finally (option 1) we consider a mechanism wherein the Application servers agree upon a compression algorithm. This would allow any flexibility for XML extension, and may allow human readable visibility to the transmitted information, albeit prior to transmission. It appears as a data expansion to XML, followed by an almost immediate compression.

Notice that for increased network efficiency, compression should be performed closer to the left side of the figure. Compression schemes applied closer to the left also require more standardization or coordination to ensure the compression algorithm is similarly applied across all ASs.

A binary encoded format, storing information using defined structures, is a form of compression that is extremely efficient. XML might be applicable for web style transactions wherein the data formats may change on the fly. However, with TAS data, this change can be managed into controlled releases.

When an XML document is transmitted, the size may become an issue. In addressing the efficiencies that may be someday desired to combat the increased size and bandwidth required for XML transmission, we notice that any efficient compression also negates the benefit of XML encoding, as the most efficient compressor may un-do the compression. Also, the compression algorithm has not been specified. While specification and standardization of this mechanism is for further study, an expectation is the control and standardization of the compression algorithm would introduce additional complexity. One observation: simplification of data distribution is NOT facilitated by introducing verbose, Man-readable, XML style formats for this well-understood data.

5.8
Application Server Service Data Descriptions (ASSDD) Reference point.

Binary data is not permitted within the Sh interface. When binary assumptions are made to define service data, this must be converted. Other Sh binary transfers have used the base64 encoding scheme. For this case, a service data definition is established as shown in Figure 5.8.1. This is at a point prior to base 64 encoding the binary data into an ASCII, IETF RFC 20 [14] format and including or extracting it from the Sh-Data>RepositoryData> ServiceData XML tags within the User-Data AVP. The defined format is not exposed on the Sh interface. Instead it is different by the deterministically recoverable base64 encoding scheme. See IETF RFC 2045 [15], IETF RFC 3548 [16].

[image: image7]
Figure 5.8.1: Definition point for TAS

Base64

En/De

Code

HSS

ASSDDCSDB

Definition

TAS

Cache

Sh (ascii)

Binary

Local

Reformatting

(optional)

3

Storagebase

Data

1

Server

App

Compression Options

3

2

1

base

Data

HSS

Server

App

3

2

1

Storagebase

Data

HSS

Server

App

[image: image1.emf]

[image: image8.emf][image: image9.emf][image: image10.emf][image: image11.emf][image: image12.emf][image: image13.emf][image: image14.emf][image: image15.emf][image: image16.emf][image: image17.emf][image: image18.emf][image: image19.emf][image: image20.emf]