3GPP TSG CT WG4 Meeting #36bis
C4-071512
Kobe, Japan, 8th – 12th October 2007
Source:
Nokia Siemens Networks
Title:
Discussion paper on GTP-C version for EPS
Agenda item:
6.1.1
Document for:
INFORMATION

1.
Introduction
In order to distinguish between legacy GTPv1 and GTP version that will be used for EPS. Below in the text a term ‘eGTP’ is used to refer to the “GTP version that will be used for EPS”.

Evolved GTP (eGTP) will be used in EPS across S1-U, S3, S4, S5, S8a, S10, S11 and S12 interfaces.

S1-U is under RAN3 responsibility, but it will be CT4, which defines the protocol. eGTP-U will be used not only across S1-U, but also across S4 (at least for user plane tunnel to R8 A/Gb mode SGSN), S5, S8a and S12 (for user plane tunnel to R8 UTRAN) interfaces.
Note:
CT4 needs to coordinate work with RAN3 because eGTP-U will be used also across other interfaces than S1-U.

All eGTP-C interfaces are under CT4 responsibility.
CT4 has not decided yet if GTPv1 should be extended for EPS, or if GTPv2 should be designed.
Each option has pros and cons and this paper tries to address these issues. Defining eGTP-C requirements for EPS usage seems to be a prerequisite for making the decision.
2.
Requirements to GTP-C for EPS interfaces

The following requirements to eGTP-C seem relevant for EPS to legacy interworking:

1. Protocol shall be backward compatible with the existing GTPv1 implementations.

2. Protocol shall not support GTPv0 interworking.
3. Protocol should remove GTPv1 flaws without breaking backward compatibility.
4. Protocol should support S1-U interface features that will be defined by RAN3 (see TS 36.414). Note: RAN3 should coordinate the work with CT4.
5. eGTP-C based interfaces between 3GPP R8 UTRAN/GERAN and EPS should be as close as possible to eGTP-C interfaces within EPS.
3.
Discussion on how to meet the requirements

The discussion below offers a way for meeting the above requirements.
3.1
Backward compatibility
Two use cases should be considered when addressing the backward compatibility with GTPv1.
GTPv1 entity sends a request message to the peer. The receiving entity apparently must reply with GTPv1 message. In order to achieve this eGTP peer must listen to GTPv1-C port.

When eGTP entity sends a request message to the peer the very first time, the eGTP entity cannot know the peer’s capability. In this case, it is paramount to ensure that GTPv1-only capable peer correctly decodes the message. In order to achieve this eGTP peer must send the message to GTPv1 port.
Next steps depend on CT4 decision to introduce explicitly GTPv2, or to extend GTPv1 with EPS specific messages and IEs. The latter case however means implicit introduction of a new flavour of the protocol (implicit GTPv2). In the latter case also the content of the message (IE presence and coding) must be backward compatible. An example for such use case could be R8 SGSN sending a request message to pre-R8 SGSN or to pre-R8 GGSN.
3.1.1
Extended GTPv1 option

GTPv1 has rather strict rules on handling protocol-wise mandatory and conditional IEs. PS domain development however required the addition of new IEs to GTPv1. In order to maintain backward compatibility, all new IE were defined protocol-wise optional. Semantically many of these IEs however were defined to be either mandatory or conditional. The following illustrates that the extensions would be backward compatible:
1. All eGTP request message format tables should read that eGTP entity includes all semantically mandatory IEs, and all semantically conditional IEs if the conditions are met. If the receiving entity supports only GTPv1, then the GTPv1 entity treats some of these IEs as optional. The presence of optional IEs will not cause any problem at GTPv1 entity. The receiving GTPv1 entity either processes the optional IE, or silently discards it.

2. When GTPv1 entity sends a response message, the eGTP entity learns that the peer supports only GTPv1.

If GTPv1 entity sends a request, then eGTP entity will know right from the beginning that the peer supports only GTPv1 and shall fallback to this protocol flavour.
The above mechanism needs more clarifications on eGTP-C header coding/format. It is essential that after the initial exchange of messages, the eGTP-C entities discover that the peer is eGTP capable or not. If this is the case, then the subsequent communication would continue in eGTP-C only. This implies an indication of eGTP support in the initial request/response messages.

There are at least two ways for handling the subsequent communications:

· All request message syntax follows the above described GTPv1 based format. The pro is that this would not require implementing a state machine in a eGTP-C entity. The con is that all eGTP-C request messages should be aligned with GTPv1.
· Only a subset of request messages follow the above described GTPv1 based format. The con is that this would require implementing some kind of simple state machine in a eGTP-C entity. The pro is that we could freely redefine the majority of eGTP-C request messages without a need to align them with GTPv1.

Let’s take a closer look into the second bullet point right above. If, e.g. SGW sends a Create Default Bearer Request message to PGW, then the message type should be same as it is for Create PDP Context Request (decimal 16) and the Version field should be set to 1. PGW replies with Create PDP Context Response message (new type value) and with an indication that PGW supports eGTP (see below). All subsequent SM messages (Update/Delete) for the given UE should be sent with eGTP message types, because SGW and PGW do not need to talk GTPv1.
For extended GTPv1-C option, in order to indicate that GTP entity supports eGTP, a new flag or a new IE should be added to the existing set of IEs.
Another way is to set Version field value to 2 is all response messages and in all subsequent request messages. A legacy GTPv1 entity would most probably reject the request with the message “Version not supported”.

Setting the Version value to 2 in the initial request message is discussed below in the “GTPv2 option” subclause.

3.1.2
GTPv2 option

Explicit introduction of GTPv2 would make the solution to the backward compatibility problem simpler. When a legacy GTPv1 entity receives at GTPv1-C port a message that has a value of the Version field set to 2 (in the GTP-C header), the GTPv1-C entity should reject the request with the message “Version not supported”. In such case eGTP entity should mark the peer’s IP address as GTPv1-only capable and fall back to GTPv1-C.
Summary:

· Protocol negotiation with the extended GTP-C option is possible, but GTPv2 would make the solution much simpler.
3.2
Removing GTPv0 support
GTPv1 – GTPv0 interworking has created lots of problems in life networks. Basically, the problem arises because GTPv0 and GTPv1 have different port numbers. Besides, no explicit fallback procedure from GTPv1 to GTPv0 was standardized. Rather, it was left to the implementations that lead to interoperability problems. In order to overcome the problem, GSM Association has recommended that all GPRS networks should support GTPv1 starting from 1 January 2005 (see “Inter-PLMN backbone guidelines” at http://www.gsmworld.com/documents/ireg/ir34.pdf).
Apart form GTP version, it seems highly unlikely that 3GPP R8 network elements or EPS network elements could in fact hand over a UE to pre-R99 GSN. At least there is no evidence that such interworking would actually be possible. Hence, it is unlikely that eGTP capable entities would ever communicate with GTPv0-only capable entity.
Summary:

· It is proposed to agree that eGTP capable entity shall not support GTPv0.

3.3
GTPv1 flaws
The following GTPv1-C features may be considered subject to optimization in eGTP-C:
1. Restoration and recovery mechanisms are not as efficient as desired.

2. Some of the TLV coded IEs were made non-extendable for no apparent benefit. For instance, Common Flags IE.

3. TLV coded information elements have 2 octets long Length field, which provides for Value field lengths up to 64k octets (16 bits long). One octet long Length field would provide for Value field lengths up to 255 octets. In practice only couple of IE may need longer Value fields than 255 octets. It may be useful to define more efficient coding for the Length field. For instance, if bit 8 of the second octet of the header (the first octet of the length field) is set to 0, then the length of the Value field is in the range of 0-127 octets. If the bit 8 is set to 1, then the third octet of the header (the second octet of the Length field) is in range of 128-32k octets (15 bits long).
Below are some typical length values for a number of IEs:

· PDP Context: around 100 octets
· MM Context: around 50 octets
· Authentication Quintuplet: around 70 octets
· UTRAN Transparent Container: around 200 octets
4. TV coding is by nature backward incompatible, but it may be quite efficient if defined at the very first version of a protocol. Another way for making TV backward compatible could be possible by adding length checking feature to the receiving entity. For instance, if a message contains: TV1, TV2, TV3, TV4, TLV1 IE and if TV3 is not supported by the receiver, then TV3 and TV4 are send back in the response message as not known IEs.
5. If eGTP header would have fixed length, this will make header processing much faster. GTPv1 header Extensions did not prove being very useful. Therefore, making eGTP header a fixed length one (8 octets long) should be considered. Information that GTPv1 sends with extension headers can be sent as IEs.
6. GTPv1 does not permit extensions to TLV coded mandatory IEs (see subclause 11.1.6 in 29.060). Changing this should be considered. For instance, if IE length is longer or shorter than expected, then the receiving entity should process known fields and ignore unknown/missing fields. This matter might require a separate discussion.
3.4
S1-U aspect
The eGTP protocol should support S1-U interface features that will be defined by RAN3. RAN3 should however consider requirements for the eGTP protocol specified by CT4. For instance, it seems obvious that eGTP-U and eGTP-C headers should have the same format. Besides, eGTP-U will be used not only across S1-U, but also across S4, S5, S8a and S12 interfaces.
3.5
Implications on other specs

It should be noted that eGTP may have impact at least on charging specs.

3.6
Harmonizing GTP-C interfaces
This requirement implies that GTP-C messages across the following interfaces are made as close as possible:

· S3 (SGSN-MME) and S10 (MME-MME).
· S4 (SGSN-SGW) and S11 (MME-SGW).

· S1-U (eUTRAN-SGW) and S12 (UTRAN-SGW).

· GTP variant of S5/S8a and R8 Gn (R8 SGSN – R8 GGSN).
An agreement on eGTP format would be the prerequisite for addressing the interface harmonization issues.

4.
Conclusion and proposal
Introduction of GTPv2 looks simpler and more efficient way for solving the backward compatibility problem and for removing GTPv1 flaws from eGTP-C. Main point for GTPv2 is that in any case a eGTP capable entity needs to know with which flavour of protocol it can communicate with the peer. That is, implicit flavour/version negotiation is necessary. If so, it would be simpler and safer having an explicit version negotiation.

If CT4 agrees to having GTPv2 as candidate protocol for EPS, NSN will provide necessary contributions to GTPv2 spec. GTPv2 could be specified either in TS 29.060, or a new spec number can be sought for it.
