3GPP TSG-CT WG4 Meeting #30
C4-060187
Denver, Colorado 13th February – 17th February, 2006.
Source:
LM Ericsson

Title:
GTP Path Failure Problems 

Agenda item:
7.10
Document for:
Discussion/Approval

Introduction

Enhanced GTP Path Failure Recovery functionality was introduced in the GTP protocol in 3GPP Specification Release 6 by the CR 29.060-431 rev3, doc N4-040316. It was meant to enhance the supervision mechanism that already existed in earlier releases of the GTP protocol in order to solve a problem of dangling PDP Contexts at path failure. However, the Path Failure Recovery function specified in release 6 is not functional, neither in GTP communication between Rel 6 peer-GSNs nor regarding backwards compatibility. Implementations now exist of the Enhanced GTP Path Failure Recovery Functionality, and severe interoperability problems have been observed in live networks.

Background

In 3GPP Rel 5, Path Failure mechanism and Restart and Recovery mechanism were 2 separate functions: 
· The Path Failure detection was a local function and not included in the protocol exchange between peers. The communication path was supervised using a path counter. Upon failure detection, upper layers locally and OaM is notified and PDP Contexts may be deleted.
· The Restart and Recovery was used for node supervision and was a protocol function indicating to peers that a node had been restarted. 
The Restart and Recovery in Rel 5 is done with the help of a Restart Counter. A GSN keeps in non-volatile memory a local Restart Counter, which is incremented at restart of the node. The Restart Counter is associated with a GSN node, and its signaling address, and not with a path. The PDP Context Create Request is sent from the SGSN to the GGSN to create a PDP Context. The Request contains, among other things, a SGSN signaling address and the Restart Counter. The PDP Context Create Response is sent back from the GGSN and contains the remote GGSN signaling address and its Restart Counter. When a GSN node later receives a GTP-message from the same GSN node (identified by the signaling address) including the Restart Counter and finds that the Restart Counter has changed, it is assumed that the remote node has restarted, and all its PDP Contexts are deleted locally. This mechanism prevents dangling PDP Contexts.
In 3GPP release 6, the Path Failure Recovery mechanism was added as an enhancement of the GTP supervision mechanism that existed prior to Rel 6. The Restart Counter definition is changed, it is now associated with a path i.e. a pair of end-points. A GSN node now holds different Restart Counters towards different destinations. When path failure is detected, the PDP Contexts on the path is deleted and the associated Restart Counter is incremented. Also in this case, when a peer GSN node later receives a GTP-message including the Restart Counter and finds that the Restart Counter has changed, it is assumed that the sender has deleted all PDP Contexts due to path failure (or restart), so all its PDP Contexts are deleted locally.

Problem in Rel 6
There are several problems associated with the Path Failure Recovery Functionality as introduced in 3GPP GTP Rel 6 specifications.
1) First, there is a problem with the current specification even in the case that 2 GSN nodes that both implement the 3GPP Rel 6 GTP functionality communicate with each other. At Create PDP Context the signaling is done between a SGSN and a GGSN, e.g. between SGSN Default Entity and GGSN Default Entity. According to the GTP specification, the PDP Context may be created on end-points, which are different from the Default Entities. New addresses for the allocated PDP Context, which may differ from default addresses, are exchanged in the Create PDP Context Req/Resp messages. 
How does release 6 handle this:

· Is the restart counter associated with a pair of signaling addresses?

· Is the restart counter associated with a pair of source and destination addresses?

· Is the restart counter associated with a mix of signaling and source/destination addresses?

It is not clear from the specification how to interpret Rel 6. The result will be that there is no supervision which may result in hanging PDP Contexts. With the new Path Failure Recovery, the situation in 3GPP Rel 6 is not better than it was in Rel 5.

2) Secondly, there is a more serious problem - the Path Failure Recovery functionality as specified in GTP Rel 6, introduces a backwards compatibility problem. The result when deploying Rel 6 GSNs in a mixed network together with Rel 5 GSNs, is that healthy PDP Contexts are deleted, due to that the Restart Counters (RC) in Rel 5 GSNs and Rel 6 GSNs will get out of synch. In Rel 5 the Restart Counter was associated with a node (identified by one signaling address). 3GPP Rel 6 redefines the RC and introduced that the RC is associated with a path (i.e. two addresses). The problem is that a Rel 5 GSN will not understand that a peer Rel 6 GSN can have several RCs and that it may receive different RCs from the same peer. When the Rel 5 GSN receives different RC from the same peer GSN, it is interpreted as a remote restart and all PDP Contexts are deleted locally. The only remedy found is to turn the recovery mechanism off!!!
Proposal

There may be different solutions, but the interoperability problem is sufficiently severe that it is best solved by stepping the functionality in Rel 6 back to the Restart and Recovery as well as Path Failure Mechanisms, that was specified in GTP Rel 5. Any enhancements may be introduced in Rel 7 after working through a mechanism that is working and is backwards compatible. A CR is provided in Tdoc C4-060188.
Appendix, backwards incompatibility details
The problem can be seen in detail the fig:

[image: image1.wmf] 

SGSN Rel6

 

GGSN Rel5

 

Create PDP request(SGSN ctrl addr=s2, restart counter(s2, g1)=0)

 

Source address=s1 Destination address=g1

 

Create PDP response(GGSN ctrl addr=g2, restart counter(g2)=0)

 

Source address=g1 Destination address=s1

 

2) 

Path failure (N3T3 timeout) is 

detected on path(s2,g2). All contexts on 

that path are locally deleted and the 

restart counter for that path is 

incremented, i.e. rc(s2, g2)=

1.

 

APN: GGSN IP = g1

 

Echo request

 

Source address=g2 Destination address=s2

 

Echo response(restart counter(s2, g2)=1)

 

Source address=s2 Destination addre

ss=g2

 

The incremented 

restart counter is 

detected and all 

contexts to (s2) 

are locally 

deleted. Note that 

we are now also 

deleting ”healthy” 

contexts! 

 

Create PDP request(SGSN ctrl addr=s2, restart counter(s2, g1)=0)

 

Source ad

dress=s1 Destination address=g1

 

Create PDP response(GGSN ctrl addr=g2, restart counter(g2)=0)

 

Source address=g1 Destination address=s1

 

Create PDP request(SGSN ctrl 

addr=s2, restart counter(s2, g1)=0)

 

Source address=s1 Destination address=g1

 

Create PDP response(GGSN ctrl addr=g2, restart counter(g2)=0)

 

Source address=g1 Destination address=s1

 

Several 

contexts are 

created on (s2, 

g2)

 

Now GGSN receives a 

new restart counter for 

s2 and changes it back

 

to 0. GGSN will however 

receive restart 

counter=1 in echo 

responses from s2!!!

 

DNS

 

Meaning that once the 

restart counters have 

come out of synch in 

this way, there is no 

solution other han 

turning the recovery 

mechanism off!!!

 

1)

 

3)

 

4)

 

5)

 


1. A Rel6 SGSN sends Create PDP Context to a Rel 5 GGSN, the dest address is g1 and the source address is s1. The SGSN includes the SGSN address for signaling = s2, and a RC between S2 and g1 (presumably). The GGSN includes the GGSN address for signaling = g2 and its RC (rel 5 node has only one RC).

2. SGSN detects a Path Failure on the signaling path between s2 and g2, deletes all PDP Contexts and increments the path-RC.

3. SGSN sets up the PDP Context again and maybe a number of new PDP Contexts. Again RC (s2, g1)=0 and the creation of new PDP Contexts can proceed as intended. (Note: at this point the original PDP Context is left dangling in the GGSN(!), but at least the new PDP Contexts are usable)

4. The GGSN sends an Echo Req and receives the RC from the SGSN. The SGSN sends its RC for the path RC(s2,g2) =1, which is interpreted in the GGSN as a restart. All PDP Contexts towards the SGSN is deleted, also the healthy ones, not only the original one that was dangling.

5. At a later stage, the SGSN may try to set up further PDP Contexts, again RC=0, and the GGSN resets the RC to 0. Now the RCs in the GGSN and in the SGSN are out of synch and again, the Echo Req/Resp will cause all PDP Contexts to be deleted (there is no way to get in synch again, and the only remedy is to turn the recovery mechanism off).
_1199269663.doc


1)





Meaning that once the restart counters have come out of synch in this way, there is no solution other han turning the recovery mechanism off!!!





DNS





Now GGSN receives a new restart counter for s2 and changes it back to 0. GGSN will however receive restart counter=1 in echo responses from s2!!!





Several contexts are created on (s2, g2)





Create PDP response(GGSN ctrl addr=g2, restart counter(g2)=0)


Source address=g1 Destination address=s1





Create PDP request(SGSN ctrl addr=s2, restart counter(s2, g1)=0)


Source address=s1 Destination address=g1





Create PDP response(GGSN ctrl addr=g2, restart counter(g2)=0)


Source address=g1 Destination address=s1





Create PDP request(SGSN ctrl addr=s2, restart counter(s2, g1)=0)


Source address=s1 Destination address=g1





The incremented restart counter is detected and all contexts to (s2) are locally deleted. Note that we are now also deleting ”healthy” contexts! 





Echo response(restart counter(s2, g2)=1)


Source address=s2 Destination address=g2





Echo request


Source address=g2 Destination address=s2





APN: GGSN IP = g1





2) Path failure (N3T3 timeout) is detected on path(s2,g2). All contexts on that path are locally deleted and the restart counter for that path is incremented, i.e. rc(s2, g2)=1.





Create PDP response(GGSN ctrl addr=g2, restart counter(g2)=0)


Source address=g1 Destination address=s1





Create PDP request(SGSN ctrl addr=s2, restart counter(s2, g1)=0)


Source address=s1 Destination address=g1





GGSN Rel5





SGSN Rel6





3)





4)





5)









