3GPP TSG CT3 Meeting #93
C3-176017
Reno, USA; 27th November to 1st December 2017
Source:
Orange
Title:
Discussion paper on the HATEOAS REST tenet and its benefits
Agenda item:
15.2
Document for:
DISCUSSION
1. Introduction

The HATEOAS (Hypermedia As The Engine of Application State) tenet is a pillar of REST architecture. Deciding not to embrace it would jeopardize most of the REST benefits (such as cloud-friendliness, ease to deploy and openness) that were advocated in the conclusions of TR 29.871, leading to the adoption of HTTP/2 and the REST model as the protocol support for the 5G Service-Based Interfaces.

This paper aims at:

· providing lecture references to CT3 and CT4 delegates

· clarifying the HATEOAS REST tenet
· providing examples of API and use cases for which HATEOAS should be applied

· proposing a minimum level of HATEOAS adoption by all 3GPP defined API

· a proposed set of actions

The proposed discussion provides a summary of the HATEOAS tenet and its benefits. The following references have been used to build this overview:
· "REST in practice" by Jim Webber, Savas Parastatidis, and Ian Robinson – O’Reilly

· Roy Fielding's dissertation on REST

· "Restful Web Services" by Leonard Richardson, Sam Ruby, David Heinemeier Hansson --O'Reilly (2007)
· "RESTful Web Services Cookbook_ Solutions for Improving Scalability and Simplicity" by Subbu Allamaraju -Yahoo Press (2010)
· "REST API Design Rulebook" by Mark Masse -O'Reilly Media (2011)
2. HATEOAS tenet
The HATEOAS tenet is about how application state transition shall be modelled and transferred to the client in a REST compliant API. It’s also about how hypermedia, relation type and media type shall be used to provide meaningful information to the client to drive state transitions.
Over existing 3GPP defined interfaces, the client interacts with the server by the mean of the interface protocol, syntax and semantic of the command and information elements being defined in a standard Technical Specification. Clients and servers both infer on their own side what the current application state is and what are the next legitimate application state transitions. They do it based on the information exchanged in-band through the interface but also out-of-the band (in our case the Technical specification). This depends on each application and requires a tight coupling between server and client so that client correctly infers the same state changes as the server. The state machine must be kept perfectly synchronized in both client and server.
On the opposite in a hypermedia system, hypermedia links are used to advertise to the client legitimate application state transitions and what resource it has to manipulate to transit to the next state. A transferred representation includes links that reflect the state of the application.

2.1. Illustrative example: AUSF service.

To illustrate this let’s take the example of the AUSF service.

When the AMF submits the first request to the AUSF both of them don’t know which authentication methods they will have to perform. It depends of the authentication material provided by the UDM. If it returns EAP material then the AUSF and AMF shall proceed with EAP based authentication using the material in the representation returned by the AUSF to the AMF. Same principle applies with AKA.
So we have three transitions possible here:

1. No more interaction (subscriber unknown, UDM denies authentication for ODB…);
2. Transition to EAP authentication and POST the challenge response;
3. Transition to AKA authentication and optionally POST an authentication notification.
In a REST non-compliant implementation, the AUSF could return a representation of a resource that would contain a parameter called authentication method and the AMF would have to infer from it both the type of authentication and the next valid state transition.

In a REST implementation, the two state transitions can be modelled with two types of resources: type 1 for AKA and type 2 for EAP. If the AMF has to proceed with an AKA authentication, the AUSF returns a representation containing the AKA authentication material together with a link to a type 1 resource. Moreover, as the generated authentication material can be used only once, the AUSF shall not provide any link to the returned representation. This specific resource will never be read or modified again in the AUSF.
2.2. Advantage of HATEOAS
The client needs no more to infer authorized application state transitions from out-of-band and application specific information. The server is in charge of it. The client infers the next authorized interactions by acting on the resources identified by the links (including the returned one). This is a unique mechanism that is application independent and can be reused across APIs. This increases reusability of the design and reduces the coupling between the client and the server.
Proposition 1:
A first step toward HATEOAS is to include a link to the returned representation when it is expected further actions upon it (for instance reading it again or replacing the resource state).

2.3. The semantic of the state transition lies in relations
The next challenge now is to provide information about the linked resource and their relation. In other word what does it mean when the application state is modified using this link?
One simple solution is to identify the relation using URI templates (for instance identify a delete operation that requires a payload by {apiRoot}/{apiName}/{apiVersion}/{apiSpecificResourceUriPart}/rpc/delete). However, URI templates are application specific and create a tight coupling between the client and server.
A preferred approach to identify the relation is to decouple the link address from the link semantic by selecting a Hypermedia format or define a format specific to an application domain. The Hypermedia format allows providing the URI of the resource together with a relation type attribute that uniquely identifies the meaning of the link. URIs format may change in the application lifetime but the relation is not supposed to. By decoupling the addressing from the semantic of the link, the URI format can now be changed by the server w/o breaking the client application.
There are two kinds of relation types:

-
Registered relation types;

-
Extension relation types.
Registered relation types are registered by IANA here.

An extension relation types is just a URI that uniquely identifies the relation type and semantic under the control of a domain.
For instance the Nudm and Nudr services could benefit from adopting the hypermedia and using IANA registered relation types to solve the problem of querying a collection of resource. There are standard pagination solutions that 3GPP can reuse.
Once again, with HATEOAS, we achieve a looser coupling between client and application with the benefit of simpler evolution and reusability of the application.
Proposition 2:
A hypermedia format shall be used to identify resource relation. 3GPP shall either select an existing standard hypermedia format or define a new one in its own application domain. The format shall have at least two attributes to identify the linked resource address and the relation type.

Proposition 3:
When no registered relation exists to express the relation between two resources, an extension relation type can be used instead. An extension relation type is a URI that uniquely identifies the relation type and semantic.
An example of hypermedia format with a registered relation type is provided below:
"link" : {

"rel" : "alternate",


"href" : "http://east-nj1.photos.example.org/987/nj1-1234",

}
An example of hypermedia format with an extension relation type is provided below:

"link" : {


"rel" : " "{apiRoot}/v1/5G-AKA-confirmation"",


"href" : "{apiRoot}/v1/confirm/{confirm-Id}",

}
Rel attribute contains the relation type. Href attribute contains the URI of the linked resource.
2.4. A media type for 3GPP
In HATEOAS, a media type specifies an interpretative scheme for resource representations. This scheme is described in terms of encodings, schemas, relation types and processing models, and is a key step in creating a contract for a service. By designing our own 3gpp application specific media type (application/vnd.3gpp+json), 3GPP would allow developing specific media type processors. These processors can later be downloaded and combined with others standard or application specific processors to rapidly construct 3GPP APIs. This would improve once again reusability. The needed information is very similar to what we will specify in TS 29.571 “5G System; Common Data Types for Service Based Interfaces” except that relation types are missing.
Proposition 5:
CT4 together with CT3 should decide of the exact granularity of the vendor specific media subtypes (a single one for all 3GPP APIs or one per API).
Proposition 6:
Adding supported relation types into TS 29.571.
3. Conclusion

The main benefits of adopting the HATEOAS tenet are to ease the evolution of APIs and to increase the reusability of software design. Eventually it will help decrease the API implementation time and save costs.
HATEOAS appears to be straightforward and helpful for applications with simple state transitions such as the AUSF and SMSF. The current proposal for the design of the AUSF API is an example of use of HATEOAS tenet (cf C4-176169). So the adoption of HATEOAS should be considered.
However it is needed to agree on a minimum set of guidelines in R.15 to design future proof APIs that would then allow each API designer to support HATEOAS. They are captured below.

It is proposed to:
1. Adopt HATEOAS when it is expected further action after returning representation (for instance reading it again or replacing the resource state) to complete a procedure.
2. Consider the appropriate granularity of vendor specific media subtypes for 3GPP applications;

3. Agree on a hypermedia format with at least two attributes to identify the linked resource address and the relation type;
4. Registered relation types shall be preferred against extension relation types when expressing the link relation between two resources.

5. For 3GPP specific relations, the relation attribute shall contain an extension relation type: a URI defined under the 3GPP responsibility;

6. Adding a chapter to list the supported relation types into TS 29.571;

Corresponding CRs have been proposed for TS 29.501 and TS 29.571.
· C3-176018: Introducing a chapter in TS 29.571 for relation type considerations
· C3-176020: Guidelines on hypermedia usage in 3GPP CT APIs
· C3-176046: Defining an hypermedia format for 3GPP API
