3GPP TSG CT3 Meeting #93
C3-176016
Reno, USA; 27th November to 1st December 2017
Source:
Orange
Title:
Discussion paper on resource archetype in REST
Agenda item:
15.2
Document for:
DISCUSSION
1. Introduction

In TS 29.501 two different types of resources (any object identified by a URI is a resource) are defined:
1. Resources
2. Custom operations
Resources are used to model objects that are manipulated only with CRUD operations.
Custom operations are used in relation to an existing above mentioned resource when the application needs to manipulate it with an operation which cannot be mapped to a CRUD one. Custom operations can also be used as an API entry point without any link to another resource when associated with the service instead of a resource. The type of operation of a custom operation (its semantic) is provided by the URI string. The client application has to infer it using the template defined in TS 29.501 chapter 4.4.2.

Though the current approach proposed in TS 23.501 can work, alternative REST compliant practices can be found in the literature. They are based on the concept of resource archetype and on a very simple utilisation of hypermedia.
This paper aims at:

· Providing lecture references to CT4 delegates;
· Present the different resource archetypes and their purpose;
· Make a deeper focus on the resource controller archetype and how it can be REST fully used in replacement of custom operation;
· Proposed guidelines to narrow down the usage of custom operations;
· A proposed set of actions.
The reference below provides REST API extensive design rules. Resource archetypes are presented at chapter 2.
· [1] REST API Design Rulebook by Mark Masse -O'Reilly Media (2011)
2. Resources archetypes
When designing an API, one shall first think of defining the set of resources consumed. Resources represent objects that are modified by standard HTTP methods and that can be modelled with one of 5 archetypes detailed below. Resource archetypes help API designers to structure the resources. In this process the designer shall select the appropriate archetype. The latter also provides meaningful information to API consumers.

Document

The document archetype is the conceptual base archetype of the other ones. Any resource that is not identified with one of the other resource archetypes is a document.

A document may have child resources that represent its specific subordinate concepts.

The archetype does not place any restriction on HTTP methods when acting on a document.

Only CRUD operations are performed on a document.

Collection

The collection archetype can be used to model a resource that serves as a directory of resources. A collection is server-managed so the server solely decides to accept or reject the creation of a new resource and also decides the URIs of each created resource.

Created resources can be stores or documents.

Only CRUD operations are performed on a collection.

-
PUT method is not allowed with collections;

-
A collection child resource can be created by sending a POST with the collection URI if accepted by the collection;

-
A collection can be read by sending a GET with the collection URI;

-
A collection may be deleted by sending a DELETE with the collection URI if accepted by the collection.

Store

The store archetype can also be used to model a resource that serves as a directory of documents but a store is client-managed. The client solely decides what resource shall be added/deleted to/from a store. The client decides what the URI of the added resource is.

Only CRUD operations are performed on a store.

-
POST method to the collection URI is not allowed;

-
A store child resource can be created by sending a PUT with the URI of the created resource.

-
A store can be read by sending a GET with the store URI;

-
A store may be deleted by sending a DELETE with the store URI.

Resource controller

The resource controller archetype can be used for a resource that models an unsafe and non-idempotent operation that is not a Create on a collection.

The controller resource acts as an executable function with input parameters and returns the result of the executed function in the response body.

POST is the only method allowed with a resource controller.

There are two options to identify the function performed by the resource controller to the client.



Encoding the resource controller semantic into the URI

If the controller resource has no parent resource (when associated with the service instead of a resource) and is not linked to any other one then this is an API entry point and the semantic of the operation performed by the resource controller shall be encoded in its URI. The URI must be unique to unambiguously identify the operation. Two different resource controllers must have different URIs.
A controller resource can be used for instance for the Nsmsf_SMService_Activate service operation. There is no obligation to add an “rpc” string to a controller resource URI.



Providing the resource controller semantic with a link relation type

The controller resource can also be used to model one operation on a resource that is not an API entry point. The controller resource is linked with the resource upon which it acts and its semantic is then identified by a relation type not by a URI template. 

The server shall add a link to the resource controller when:

-
The server returns a representation of the resource upon which the resource controller acts

-
The link expresses a legitimate resource state transition at that time.

The link relation type identifies the function of the resource controller.

For example, one application needs to delete a document resource but it also needs to send data to the server for logging purpose at the same time. Due to DELETE method limitation it’s not possible to use it. A delete resource controller can be created which function is to log the provided information and then to delete its parent resource. When the document resource is created, the server returns a representation of the document. This representation contains a link to a resource controller which is a child of the returned resource (document-path/release for instance). The resource semantic is defined by the relation (rel=”delete”) in the link.

Creating once such relation would be very useful as it can be reused for other APIs. It is likely that another API will have to delete a resource and pass data for processing to the server at the same time. It also provides looser coupling between the client and the server.
Proposition 1:
When designing a resource, we should identify which archetype it refers to. This provides meaningful information to API consumers.
3. Replacing custom operations associated with the service by a controller resource archetype

The resource controller archetype and the custom operation associated with the service are actually equivalent concepts. In both cases they are used exclusively for non-CRUD operations using the POST method and their semantic is identified by a unique URI.

In this case a resource controller can safely replace a custom operation without any burden and a URI template such as {apiRoot}/{apiName}/{apiVersion}/{resContId}can be used.
On the other hand using a custom operation URI template gives a wrong message that 3GPP is specifying Remote Procedure Call although we are not.
Proposition 2:
Custom operations associated with the service shall not be permitted and a resource controller shall be used instead.
4. Replacing custom operations associated with a resource by a controller resource archetype

The resource controller archetype together with HATEOAS provides a higher REST compliance but at the burden of defining a relation. When the relation is likely to be reused in some other APIs then it is preferable to use the controller resource instead of a custom method.
Proposition 3:
the custom operation shall be reserved to non HATEOAS APIs.
5. Conclusion

Resource archetypes help API designers to structure the resources. It also provides meaningful information to API consumers. The controller resource archetype is intended to be used for non-CRUD operations using the POST method. It can replace the custom operations or provide a REST compliant substitute.
It is proposed to:
1. Describe the different archetypes and their URI template in TS 29.501.

2. Mandate that the archetype shall be provided when modelling a resource in an API specification;

3. Replace the custom operation associated with a service by a controller resource archetype;
Corresponding CR have been proposed for TS 29.501.
· C3-176019: Introducing resource archetypes in TS 29.501
