3GPP TSG-CT3 Meeting #90
C3-173080
Zhangjiajie, P.R. of China 15-19 May 2017
 (revision of C3-17xxxx)

Title:
Asynchronous Notifications for SCEF-SCS/AS interworking APIs
Source:
Motorola Solutions
Agenda Item:
15.4 / NAPS-CT
Document for:
Discussion and Decision
Abstract:
The paper identifies some of the limitations of the method for the http server “push” of notifications used in the 3GPP specifications that employ RESTful / JSON, and proposes the adoption of WebSocket for http server initiated “asynchronous” notifications.
1. Introduction

Although the NAPS work is focused on the T8 interface, it can be seen as part of a more general trend of granting applications access to systems and resources defined by 3GPP within the 4G and 5G programs. The access is enabled through the development and definitions of APIs, and RESTful (often using JSON) has emerged as the paradigm of choice for the definition of those APIs.
RESTful is based on http which is an asymmetrical client-server protocol, in the sense that the interaction between end points always needs to be initiated by the client. However, many interactions between 3GPP defined entities are of the type “subscribe/notify” which often require event-driven notifications to be initiated by the “server” entity.
The SCEF-SCS/AS interface (T8) is particularly rich in event-driven notifications, as the SCEF acts as terminating node for many of the 3GPP-defined interfaces which use asynchronous notifications. For example, types of monitored events defined in TS 23.682 include:
-
Monitoring the association of the UE and UICC and/or new IMSI-IMEI-SV association;

-
UE reachability;

-
Location of the UE, and change in location of the UE;

-
Loss of connectivity;

-
Communication failure;

-
Roaming status (i.e. Roaming or No Roaming) of the UE, and change in roaming status of the UE; and

-
Number of UEs present in a geographical area; and

-
Availability after DDN failure.

It is therefore necessary that a good solution for handling the transmission of notification of events occurring or detected at the “servers” be adopted. This solution should be general and should not only solve the technical problem but also have a good chance of being widely accepted and adopted by the various industries that can be served using 3GPP compliant equipment.
2. Current solutions employed in the 3GPP standards
Multiple methods for notification of events are being used. Only those related to use of http will be mentioned here.

One possibility is a “retrieval” or a “pull” by the client. The problem is that the client does not know when the event occurs. The method can be used effectively when the latency of the availability of the information is not essential. A way to solve this issue is to have the client perform constant, periodic or occasional polling (“short” or “long”), which may become resource use intensive and thus impractical.
A more efficient solution from a latency and resource utilization standpoint, is for the server to perform a notification “push”. That requires the http server to be able to behave like an http client and the http client to behave like an http server, in order to comply with the http restriction that only a client can initiate interactions. Setting of an additional connection is necessary, and this can be initiated by the client, which would tell the server the port on the client side where the notifications are to be sent. Sometimes, this method of notifying is referred to as using a “Webhook”.
Both “pull” and “push” notification methods are used on 3GPP defined interfaces (e.g. the RESTful and JSON based xMB interface defined in TS 29.116 – see sections 5 and 8).

Using “Webhooks” works well in some cases and not so well in other cases. Here are some potential issues with the approach:
· Both sides of the interaction need to be able to act as both http client and server

· Required symmetrical bidirectional support in Firewalls and NATs intermediate nodes between the two end-point entities
· May require symmetrical bidirectional support for Authentication/authorization of the connection

In an environment of multiple trust domains and deployed software that is not well coordinated between sides or under the control or known to both sides, the disadvantages listed above may act as limiting factors.
3. An alternative and potential solution
Using “WebSockets” has emerged as an alternative of choice to using “Webhooks”, in part to mitigate the disadvantages listed above. The foundational RFC 6455 has issued in 2011, allowing for several years of maturation of the technology and the development and deployment of significant amounts of software that works well with RESTful and JSON. The work is continuing with WebSocket-related RFCs being issued as recent as March 2017 (e.g. RFC 8124 on the use of the WebSocket URI attribute in an SDP).

In a nutshell, WebSocket works by converting (or “updating”) a dully established http connection into a WebSocket connection. This approach effectively bypasses some of the Webhook problems with intermediate nodes, as reverse messages (initiated by the server) could be conceptually seen as treated (from firewalls and NAT prospective) similarly to the way the http responses are treated. Once converted to WebSocket, a connection is not only bidirectional symmetrical, but also can use any application protocol for transferring data (is not limited to http anymore). WebSocket is secure as it can run over TLS and provides framing with segmentation and reassembly thus making it suitable for many types of data transfers. There is also support for versions and extensions to the basic protocol.
Reasons for adopting WebSocket as a method for “push” asynchronous notifications by servers include:
· Avoidance of the security, firewalls and NAT problems encountered by “Webhooks”

· Re-use (and potential integration) of the same asynchronous notification method for both Northbound interfaces and for the infrastructure-to-UE interfaces, where deploying a combined http client and server entity in the UE is impractical

· WebSocket standardized support for protocols widely used (or proposed for use) by 3GPP interfaces, for example RFC 7118 SIP/WebSocket, RFC 7977 MSRP/WebSocket, RFC 7395 XMPP/WebSocket, etc.
4. Proposal

When defining the SCEF-SCS/AS API as part of the NAPS-CT work, CT3 to specify WebSocket as a mechanism for “push” (or asynchronous) notifications.
[image: image1.png]

Page: 1/2

Page: 2/2

