3GPP TSG-CT1 Meeting #42bis
Tdoc C1-061323
Montreal, Canada, 4-7 July 2006
Source:
Hewlett-Packard
Title:
CR to 24.880 : Delegation model with XML scripts
Agenda item:
8.5

Document for:
APPROVAL

Introduction:

This contribution provides input on TR 24.880, specifically “4. Media server control protocol study items”.
Proposed media server control models in IMS differ in terms of the granularity of media control messages, how the MRFC is informed of request messages, and how it reports responses and notifications.
The two major models can be described as the delegation model and the protocol model.
This contribution focuses on the delegation model and is a study of it’s relevance to the MRFC.
It also describes two markup languages which are used with the delegation model.
Proposal:

It is proposed that the information provided below is agreed and transferred to 3GPP TR 24.880.

2
References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
RFC 3261 (June 2002): "SIP: Session Initiation Protocol".

[3]
RFC 4240 (December 2005): “Basic Network Media Services with SIP”

[4]
draft-burke-vxml: “SIP Interface to VoiceXML Media Services”.
[5]
W3C Recommendation (March 2004): "Voice Extensible Markup Language (VoiceXML) Version 2.0".

[6]
W3C Candidate Recommendation (June 2005): “Voice Extensible Markup Language (VoiceXML) Version 2.1”.

[7]
W3C Working Draft (June 2005): “Voice Browser Call Control: CCXML Version 1.0”.
[8]
RFC 2616 (June 1999): “Hypertext Transfer Protocol -- HTTP/1.1”.

4
Media server control protocol study items
4.2
Choice of the transport channel for media server control

4.2.1
Delegation model
The delegation model is motivated by the notion that that the interface between the MRFC and an AS is a high level interface where the MRFC is a network entity to which an AS delegates execution of media behavior.

The interface is high level since the ASsends a script describing what media behavior should be performed, not how it should be performed in terms of low-level media operations. The script describes the media behavior in terms of a flow of functions (play prompt, collect DTMF, add participant to conference, etc) and control logic for managing and adjusting the flow (e.g. adjusting for behavior in case of media operation failures), fetching additional scripts and resources, and reporting intermediate data.

The MRFC contains script engines which executes these scripts. The engine maintains the state of script execution and therefore the state of the media behavior execution. The engine’s execution environment contains components to manage relationships with other components, including the low-level media processors. Consequently, when an AS ‘delegates’ execution of media behavior to a MRFC, it means the MRFC has an execution state which is independent of the AS’s state – the MRFC not the AS manages the execution state of the media behavior. The controller instructs the MRFC which script to run, but the MRFC manages execution of the script itself.
In terms of architecture, this model uses the existing MRFC interfaces, together with one additional interface – the Sr interface. Figure 4.2.1.1 shows an MRFC with this interface.

[image: image1.emf]MRFC

AS

S-CSCF

SrHTTP

Mp

Mr

SIP

ISC

SIP

H.248

Figure 4.2.1.1 MRFC interfaces: Sr, Mr and Mp

Using the ISC interface, an AS establishes a SIP [2] dialog to an MRFC (via a S-CSCF and Mr interface). The SIP INVITE request URI shall contain sufficient information to allow the MRFC to identify the script to execute; it may also provide additional parameters for the script. For example, using the user part to indicate a script pre-defined on the MRFC:

INVITE sip:myservice@mrf.example.com SIP/2.0
where ‘myservice’ is predefined with a script on the MRFC, or specifying a script URI as a parameter:

INVITE sip:dialog@mrf.example.com;voicexml=http://server.example.com/script.vxml SIP/2.0
where a VoiceXML script is specified as the value of the parameter “voicexml”. IETF Informational RFC 4240 [3] and Working Drafts draft-burke-vxml-01 [4] provide details on this mechanism.

The Sr interface is used by the MRFC to fetch the script and related resources. Once these have been fetched, the script is executed by the MRFC. Depending on the contents of the script, its execution may involve sending data and fetching additional scripts and resources over the Sr interface. The interaction is terminated when a SIP BYE is sent; the AS can send a BYE to terminate script execution at any time, and the MRFC sends a BYE when execution of the script terminates.

The content of the scripts is dependent on the media behavior which the MRFC needs to execute. W3C has already done extensive work on defining scripting for use in the delegation model. VoiceXML [5] provides a scripting language for interactive media functions; VoiceXML [5] is motivated in Section 6.2.1. CCXML [7] provides a scripting language for conferencing, dialog invocation and outbound dialing; CCXML [7] is motivated in Section 6.2.2.
4.2.1.1
New Interface: Sr
The delegation model requires a new MRFC interface, “Sr”.
The 3GPP SA2 group would have to be consulted for the creation of this new interface.
The Sr interface enables the MRFC to fetch documents (scripts and other resources) from an entity on the application plane.

The entity can provide these documents either from local storage or generated at runtime. The entity may be an AS if the AS supports the protocol requirements below.

The Sr interface is asymmetrical: fetch requests are only initiated by the MRFC – the application plane entity can only respond to requests.

HTTP [8] is an asymmetrical protocol which is extensively deployed for document fetching. HTTP also provides a caching model which permits fetches optimization and can thereby reduce traffic on the network. For example, documents may be fetched only when they have expired in the local cache; and fetching can be configured so that documents are not fetched at all if there is an unexpired version in the local cache.

The Sr interface shall support the HTTP [8] protocol (including full caching capabilities). Specifically, the MRFC shall support the HTTP client role and the application plane entity shall support the HTTP server role. The Sr interface should support HTTPS (where IMS network topology requires a secure connection is required). The Sr interface may support other protocols with an asymmetrical request-response model.

4.2.1.2
 Properties
As a high-level interface, the delegation model is clearly distinguished from, and complements, the low-level H.248 model on the Mp interface. Application developers can use a high-level model – familiar to web application developers – where they script their media interaction and delegate it to the MRFC, or they can develop using a low-level model – familiar to the API developers - where they use a TCP connection to send detailed instructions to the MRFP and then manage its state themselves. In the delegation model, the media behavior is defined in a script at the application service layer, the control layer (MRFC) which executes the script and manages media flow, and the media layer (MRFP) which actually carries out the media functions specified in the script. In a low-level model, the service and control layers are combined in a hybrid AS/MRFC.

With the delegation model, the AS can choose how much control to delegate to the MRFC. This depends on the content of the script and the behaviour the script can execute before it needs to fetch a new script through the Sr interface. The AS can then exercise fine-grained (tight, low-level) or coarse-grained (loose, high-level) control and can modulate this within a session. Approaches which use a dedicated control channel typically require the AS to retain fine-grained control for the whole session.

The delegation model has been extensively tested and deployed as part the web infra-structure model where it has been demonstrated as highly suitable for distributed service architectures. By reusing a well-tried model, 3GPP can focus on definition of MRFC profiles.

The delegation model fits with existing MRF architecture with only the addition of one new interface (which would be required by most alternative approaches if they explicitly recognized the need for an HTTP [8] fetching interface).

The Sr interface uses a well-known HTTP [8] protocol to fetch resources and provide responses/notifications.

The delegation model reduces the burden on the AS/CSCF to track the status, and interact with the MRFC, for the media part of interactive media, call and conferencing applications. This results in reduced network traffic with the MRFC since decisions about media flow are taken within the MRFC itself rather than passed up to the AS/CSCF for decision. For example, a single CCXML [7] script can be used to play announcement dialogs and to manage participants attending a conference, where a protocol approach will require multiple documents for creating the conference, playing dialogs, and adding/removing conference participants. Furthermore, this can reduce the response time for media control management: i.e. since the MRFC manages the flow locally, there is no need to request the AS/CSCF (e.g. via SIP INFO on ISC/Mr or a dedicated control TCP channel) to make a decision and await a response.

Use of VoiceXML [5] and CCXML [7] support the core functions of the MRF and allows simple as well as complex interactive behavior defined in scripts. Existing VoiceXML and CCXML applications (e.g. voice mail, prepaid, portals, self-service applications) can be easily and rapidly adopted within a 3GPP IMS context without the need for application recoding.

As W3C languages, VoiceXML and CCXML are developed and supported by an official W3C working group. There is minimum dependency on IETF working drafts submitted by individuals.

The Mr and ISC interface are only used for call-related functions (call establishment, management and tear-down): it is not used to transmit detailed media control messages to the MRFC or to establish dedicated control channels with the AS.

The delegation model facilitates different entities on the application layer to play different roles with respect to the MRFC. For example, a ‘gateway’ AS may initiate the sessions via the Mr interface, while others can receive HTTP requests and notifications via the Sr interface. Protocol-based approaches typically assume that the same AS which initiates the media session also interacts with the MRFC during the session.

6
Relevant Specifications

6.2
Standards and draft standards
6.2.1
VoiceXML
VoiceXML [5][6] is an XML scripting language for interactive media functionality.

The language defines an extensive set of tags which cover output functionality (media files and speech synthesis), input (DTMF, speech recognition and recording), logic (if-then-else), data model (scoped variables), events (noinput, nomatch) as well as a well-defined dialog algorithm (FIA) which manages a flow of input-output transactions. The language allows external resources – for example, DTMF or speech recognition grammars – to be specified in the VoiceXML document and fetched using the Sr interface. Depending on the flow of the interaction, further VoiceXML documents can be fetched and control transferred to the fetched document. VoiceXML also allows data to be passed to the application plane entity when a VoiceXML document or resource is fetched. VoiceXML supports both simple and complex interactive media behavior.

The current version, VoiceXML 2.0 [5], is W3C Recommendation (standard) which has extensive industry support and existing commercial deployments in the telecom sector. It is also supported by most IETF informational and working draft proposals (RFC420, draft-burke-vxml-01, MSML, MSCP, SIP Control Framework) for media interaction. W3C is also actively developing this standard with VoiceXML 2.1 [6] due out soon and VoiceXML 3.0 on the horizon.

VoiceXML does have some issues which may need to be addressed in the MRFC context. Firstly, if interactive video capability is an MRF requirement, then VoiceXML 2.0 has no explicit support. However, as described in http://www.voicexmlreview.org/Mar2006/features/video_interactive_services.html, this can be largely addressed in the current version without compromising interoperability and VoiceXML 3.0 is expected to explicitly addressing it. Secondly, VoiceXML has tags which allow the caller to be transferred (blind or bridged) to another telephone destination. This may be problematic if an MRF is not permitted to generate outbound calls. However, this feature of VoiceXML is optional and could be addressed by a VoiceXML profile for the MRFC use case. Finally, there may be cases where 3GPP wishes to extend VoiceXML with additional or different functionality. W3C have recognized this type of VoiceXML usage and VoiceXML 3.0 is expected to have a modularization framework which allows profiles, including a media server profile, and new languages to be defined.

In summary, the key benefits of VoiceXML is that it is an existing, well-supported, international standard and provides the interactive media functionality required in an MRFC context.
6.2.2
CCXML
CCXML [7] is a W3C XML scripting language for conferencing and call control functionality which was designed to complement VoiceXML’s interactive media functionality. The language uses an event-driven algorithm where user-defined actions are triggered when events are fired.

The CCXML language provides tags for 4 areas of functionalities, Firstly, it can receive inbound calls and create outbound calls using a model which supports telephony definitions, such as JAIN Call Control, and which supports various telephony protocols including SIP. When an incoming call is received, an alerting event is generated and the script can specify actions to perform, including extracting information from the call signaling, accepting or rejecting the call. CCXML also has a tag to generate an outbound call where the script can specify the telephony protocol, destination URI, a-number, etc. The second area of functionality is dialog management: CCXML has tags to prepare, start and stop dialogs. For example, when the incoming call is in an alerting state, the script could specify that an ‘early media’ VoiceXML dialog is to be started. The various states of the dialog are indicated by events. Thirdly, CCXML supports conferencing functionality: there are tags for creation and destruction of conferences, as well as tags for adding and removing participant SIP connections to/from the conference. Finally, CCXML has Input Output functionality which allows it to send and receive events to/from internal sources (connections, dialog and conferences) and external sources (this is in additional to functionality which allows fetch and transition to CCXML documents just like VoiceXML). One such functionality allows CCXML scripts to send data to and receive data from HTTP servers.

CCXML fits well with the delegation model. The CCXML script to execute is specified in the SIP INVITE received on the Mr interface; for example,

INVITE sip:control@mrf.example.com;ccxml=http://server.example.com/conference.ccxml SIP/2.0
The CCXML script would then be fetched with HTTP using the Sr interface. Upon execution of the script, the CCXML fires an event indicating that an incoming call (the SIP connection) is an alerting state and the script can then specify that a multi-party conference is to be created, an announcement played to the UE (using VoiceXML), then the UE is joined to the conference; for example,

<ccxml version="1.0" xmlns="http://www.w3.org/2002/09/ccxml">

<var name=“connection” expr=“’’”/>

<eventprocessor>

 <transition event=“connection.alerting“ name=”evt”>

 <assign name=“connection” expr=“evt.connectionid”/>

 <createconference id=“conf1" />

 </transition>

 <transition event="conference.created">

 <accept/>

 </transition>

 <transition event="connection.connected">

 <dialogstart src=”’http://vxmlserver.example.net/welcome.vxml’"/>

 </transition>

 <transition event=“dialog.exit“ name=“evt”>

 <join id1="connection“ id2=“conf1"/>

 </transition>

</eventprocessor>

</ccxml>
For each UE to be added to the conference, the AS/CSCF would reference the same CCXML script in the SIP INVITE sent to the MRFC. In that way, each participant would hear the same announcement – specified in the welcome.vxml script - and then joined to the same conference – conf1. The script can be easily extended so that script interacts with a conference focus over the Sr interface (e.g. to obtain conference policy information, indicate active talkers, etc).

The current version, CCXML 1.0, is W3C Last Call Working Draft (i.e. it is on W3C Standards track but not yet attained Recommendation (standard) status). It is expected that CCXML will become a W3C Recommendation by 2007. As an emerging W3C specified, CCXML has limited but growing industry support; support is strongest with companies which also use VoiceXML.

CCXML does raise a number of issues which need to be addressed for its use as a MRFC script language. Firstly, if video conference is an MRF requirement, then CCXML 1.0 has no explicit support. However, this can be largely addressed in the current version without compromising interoperability; for example, defining a 3GPP profile where conference policy information is retrieved using HTTP from a conference focus, and the information is used to create the conference and its video layout. More explicit control over media streams, including where to place the UE’s video in the layout, can be addressed by the addition of stream control tags (analogous to the <stream> element in MSML and MSCP). Secondly, CCXML has a tag which allows outbound calls to be created and then joined to the conference. This may be problematic if an MRF is not permitted to generate outbound calls. If this feature is not allowed in an MRF, then the 3GPP profile could explicit disallow it. Thirdly, there is currently no specification which describes how CCXML scripts are specified in SIP INVITEs and managed over the Mr interface. This could be remedied with a simple specification which provides for CCXML what draft-burke-vxml-01 provided for VoiceXML.

Finally, CCXML permits telephony protocols other than SIP. Inbound and outbound ISUP calls could be received by CCXML, depending on the implementation. CCXML is relatively agnostic on this issue: it doesn’t specify which protocols are essential for its implementation. Consequently, a 3GPP profile for CCXML could specify that only the SIP protocol is to be supported.

In summary, the key benefits of CCXML is it is an emerging script standard which fits the delegation model and provides the call and conferencing functionality required in an MRFC context.

_1213702955.vsd
MRFC

AS

S-CSCF

Sr

HTTP

Mp

Mr

SIP

ISC

SIP

H.248

