	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #13, Munich, GERMANY, 11 – 14 September 2001
	N5-010774

Source:
Ericsson

Title:
Framework exceptions
Agenda Item:
5.2
Document for:
Approval
Category:
Report
Work Item ID:
OSA
Doc Summary:

Specs involved:
ETSI ES 201 915-3 v0.0.6 Framework
Introduction

Some exceptional situations are not properly described in the specification;

1. what exception should be thrown when a requestAccess is received without a appAccess specified

2. what exception should be thrown when an announceServiceAvailability is received and the serivceInstanceLifecyleManagerRef is not specified

3. what exception is should be thrown when a signServiceAgreement is received for a serviceToken that is not correctly signed by the application.

4. what exception should be thrown when the abortAuthentication is received after the access is already requested.

Solution

1. When no callback is specified in the requestAccess a P_NO_CALLBACK_ADDRESS_SET exception is thrown, since the framework should have a callback reference for the case where the access is terminated from the framework.

2. When the announceServiceAvailability is received without a reference to the lifecycle manager, an P_INVALID_PARAMETER value is thrown. Since it is not a callback in the strict sense of the word, but a reference to a different interface, this exception is more appropriate then the P_NO_CALLBACK_ADDRESS_SET exception

3. When the application failed to sign the service agreement and invokes a signServiceAgreement on the framework, the framework will throw a P_INVALID_SERVICE_TOKEN exception, since the token expires at the moment the signing by the application failed.

4. Since abortAuthentication only makes sense during the authentication phase calling the abortAuthentication after the access is already returned, this is considered as a illegal sequence of events and hence a P_TASK_REFUSED exception is thrown in this case.

Proposed Changes

6.3.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.
The Authentication Framework interface is used by client to request access to other interfaces supported by the Framework. The mutual authentication process should in this case be done with some underlying distribution technology authentication mechanism, e.g. CORBA Security.

	<<Interface>>

IpAuthentication

	

	requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef

Method

requestAccess()

Once client and framework are authenticated, the client invokes the requestAccess operation on the IpAuthentication or IpAPILevelAuthentication interface. This allows the client to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client and framework have successfully completed the authentication process, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client. If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE). If the interface reference is not provided (i.e., NULL) the exception P_NO_CALLBACK_ADDRESS_SET is raised.
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE, P_INVALID_INTERFACE_TYPE, P_NO_CALLBACK_ADDRESS_SET
9.3.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

	<<Interface>>

IpFwServiceRegistration

	

	registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

Method

registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications . A service-ID is returned to the service supplier when a service is registered in the Framework. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type and a set of named property types that may be used in further describing this service (i.e., it restricts what is acceptable in the servicePropertyList parameter). If the string representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioral, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. An example of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If an attempt is made to assign a dynamic property value to a readonly property, then the P_READONLY_DYNAMIC_PROPERTY exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID

Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID,P_PROPERTY_TYPE_MISMATCH,P_DUPLICATE_PROPERTY_NAME,
P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVICE_TYPE,P_MISSING_MANDATORY_PROPERTY
Method

announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle manager is instantiated at a particular interface. This method informs the framework of the availability of "service instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager"instance per service instance. Each service implements the IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method called the createServiceManager(application: in TpClientAppID, serviceManager: out IpServiceRefRef). When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available. If no interface reference is provided (i.e., it is NULL) the exception P_ILLEGAL_PARAMETER_VALUE is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID,P_INVALID_INTERFACE_TYPE
7.3.2.1 Interface Class IpAppServiceAgreementManagement

Inherits from:

	<<Interface>>

IpAppServiceAgreementManagement

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

Method

signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the framework to request that the client application sign an agreement on the service. The framework provides the service agreement text for the client application to sign. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Returns <digitalSignature> : The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework. If the signature is incorrect the serviceToken will be expired immediately. This means that when the application subsequently calls signServiceAgreement on the IpServiceAgreementManagement, a P_INVALID_SERVICE_TOKEN exception will be raised.
Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.) If the serviceToken is invalid, or not known by the client application,then the P_INVALID_SERVICE_TOKEN exception is thrown.
agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, the P_INVALID_SIGNING_ALGORITHM exception is thrown.
Returns

TpOctetSet

Raises

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM
6.3.1.5 State Transition Diagrams for IpAPILevelAuthentication

[image: image1.wmf]AA

Idle

Selecting

Method

Authenticating

Client

Client

Authenticated

IpInitial.initiateAuthentication

requestAccess

 ^

P_ACCESS_DENIED

selectEncryptionMethod

requestAccess

 ^

P_ACCESS_DENIED

"

no method found"

 ^

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

"

found method" / return

prescribedMethod ^

client.authenticate

authenticate / "Buffer request"

requestAccess ^

P_ACCESS_DENIED

authenticate result(VALID)[

Auth

Incomplete] ^

client.authenticate

requestAccess / new

IpAccess

"

re-authenticate"

 ^

client.authenticate

authenticate result(VALID)[

AuthComplete] /

"Process authenticate requests" ^

client.authenticationSucceeded

result(INVALID)

All States

requestAccess / return

IpAccess

Access requested

IpAccess.endAccess

All States

but

AccessRequested

IabortAuthetnication

Figure : State Transition Diagram for IpAPILevelAuthentication

� Contact information: Corné Fonken, Ericsson Eurolab Netherlands, tel: +31 161 242639, e-mail: Corne.Fonken@eln.ericsson.se

_1061327406.doc
AA

Idle

Selecting

Method

Authenticating

Client

Client

Authenticated

IpInitial.initiateAuthentication

requestAccess

 ^P_ACCESS_DENIED

selectEncryptionMethod

requestAccess

 ^P_ACCESS_DENIED

"no method found"

 ^P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

"found method" / return prescribedMethod ^client.authenticate

authenticate / "Buffer request"

requestAccess ^P_ACCESS_DENIED

authenticate result(VALID)[Auth

Incomplete] ^client.authenticate

requestAccess / new IpAccess

"re-authenticate"

 ^client.authenticate

authenticate result(VALID)[AuthComplete] /

"Process authenticate requests" ^client.authenticationSucceeded

result(INVALID)

All States

requestAccess / return IpAccess

Access requested

IpAccess.endAccess

All States

but AccessRequested

IabortAuthetnication

