Page 1

3GPP TSG-CN5 Meeting #13
Tdoc N5-010749
Munich, GERMANY, 11th – 14th September 2001

	CR-Form-v4

	CHANGE REQUEST

	

	(

	29.198-4
	CR
	
	(

rev
	-
	(

Current version:
	4.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	setCallChargePlan in active state of call

	
	

	Source:
(

	Nokia

	
	

	Work item code:
(

	OSA1
	
	Date: (

	2001-09-13

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	SetCallChargePlan of Generic Call Control was mistakenly agreed in CN5#11 (N5-010306) not to be possible in the active state. However this decision was not implemented in 29.198-4 v. 4.0.0, but it is obviously planned to be taken into v. 4.1.0 because the change has been now implemented in the ETSI/Parlay version of the API. The agreed N5-010660 already corrected some textual descriptions, but the figures were not touched because they were still correct in 29.198 v. 4.0.0.

SetCallChargePlan was possible in active state in R99. We see that it is improper to remove it now, because existing implementations might take advantage of this useful feature.

CAMEL supports FCI operation (to which setCallChargePlan is mapped) also in the active phase of call. See TS 29.078 v. 3.8.0 chapter 11.27 and TS 23.078. It can be utilised in long (hours or days) calls or to affect charging in some special services during the call and certainly in IP Multimedia sessions later on.

The current textual descriptions refer in several places to the possibility to invoke setCallChargePlan in active state.

The Rel4 specification shall not have any statements for R99.

	
	

	Summary of change:
(

	It has been indicated in the STD of GCC Call that setCallChargePlan is possible in active state. Reference to R99 is removed.

The description of setCallChargePlan method has been revised by deleting some description about when the method can be invoked. This has been made both for GCC and MPCC (call and leg).

	
	

	Consequences if
(

not approved:
	Removal of useful functionality supported already in R99.Call charge could not be affected during calls.

	
	

	Clauses affected:
(

	6.3.3, 6.4.2, 7.3.3, 7.3.5

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	The CR is written on top of N5-010306 figures because no approved 3GPP specification yet contains this item.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
6.3.3 Interface Class IpCall
Inherits from: IpService
The generic Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs directly and it does not allow control over the media. The first capability is provided by the multi-party call and the latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on' calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.
	<<Interface>>

IpCall

	

	routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLegSessionID : out TpSessionIDRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

Method

routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.
E.g., when both answer and disconnect is monitored the result can be received two times.
If the application wants to control the call (in whatever sense) it shall enable event reports
targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.
redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

callLegSessionID : out TpSessionIDRef

Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request and the result.
 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call control service.
Raises

TpGCCSException,TpGeneralException
Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGCCSException,TpGeneralException
Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.
Raises

TpGCCSException,TpGeneralException
Method

setCallChargePlan()

Set an operator specific charge plan for the call.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object.

[image: image1.wmf]

Netwo

rk Released

Finished

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

In state Idle a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object sh

ould be destroyed and

callFaultDetected should be reported to

the application.

Active

2 Parties in

Call

1 Party in

Call

2 Parties in

Call

1 Party in

Call

IpAppCallControlManager.callEventNotify

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt] ^routeRes,

getCallInfoRes, superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"network e

vent received for which was monitored[routeRes]

"call supervision event" ^superviseCallRes

deassignCall

release

"call ends : calling party disconnects" ^callEnded

"call ends: calling party abandoned" ^callEnded

"call ends : called party disconnects

"[monitor for this event] ^callEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"requested informati

on ready"

^getCallInfoRes, superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

deassignCall

[no reports requested with getCallInfoReq AND

supe

rviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

setCallChargePlan

getCallInfoReq

superviseCallReq

setAdviceOfCharge

setCallChargePlan

Figure : 3GPP

7.3.3 Interface Class IpMultiPartyCall
Inherits from: IpService
The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs explicitly. An application may create more then one call leg.
	<<Interface>>

IpMultiPartyCall

	

	getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, callLeg : out TpCallLegIdentifierRef) : TpResult

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

Method

getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
Method

createCallLeg()

This method requests the creation of a new call leg object.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.
callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN
Method

createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination party is established successfully the CallLeg is attached to the call, i.e. no explicit setMedia() operation is needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested events will be reported by the eventReportRes() operation on this interface.
callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA
Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
Method

getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
Method

setChargePlan()

Set an operator specific charge plan for the call.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
7.3.5 Interface Class IpCallLeg
Inherits from: The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events.
	<<Interface>>

IpCallLeg

	

	routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : TpResult

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : TpResult

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult

getCall (callLegSessionID : in TpSessionID, callReference : out TpMultiPartyCallIdentifierRef) : TpResult

attachMedia (callLegSessionID : in TpSessionID) : TpResult

detachMedia (callLegSessionID : in TpSessionID) : TpResult

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectedAddress : out TpAddressRef) : TpResult

continueProcessing (callLegSessionID : in TpSessionID) : TpResult

getMoreDialledDigitsReq (callLegSessionID : in TpSessionID, length : in TpInt32) : TpResult

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in TpDuration) : TpResult

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

deassign (callLegSessionID : in TpSessionID) : TpResult

Method

routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is used, otherwise network or gateway provided addresses will be used.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
targetAddess : in TpAddress

Specifies the destination party to which the call leg should be routed
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).
connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
Method

eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "address analysed", "answer", "release".
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA
Method

release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the network. The application will be informed of this with callEnded().

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
Method

getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
Method

getCall()

This method requests the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callReference : out TpMultiPartyCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
Method

attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
Method

detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
Method

getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.
redirectedAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
Method

continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was interrupted due to detection of a notification or event the application subscribed it's interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
Method

getMoreDialledDigitsReq()

This asynchronous method requests to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event data. The application should then use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call.
length : in TpInt32

Specifies the maximum number of digits to collect.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
Method

setChargePlan()

Set an operator specific charge plan for the cal leg.
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.
callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
� Contact: � HYPERLINK "mailto:matti.saarenpaa@nokia.com" ��matti.saarenpaa@nokia.com�

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

_1061124838.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

setCallChargePlan

setCallChargePlan

setAdviceOfCharge

superviseCallReq

getCallInfoReq

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

release

superviseCallRes

"requested information ready" ^getCallInfoRes,

superviseCallReq]

[no reports requested with getCallInfoReq AND

deassignCall

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

superviseCallReq]

getCallInfoReq AND

[no reports requested with

^getCallInfoRes, superviseCallRes

"requested information ready"

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"call ends: calling party abandoned" ^callEnded

"call ends : calling party disconnects" ^callEnded

release

deassignCall

"call supervision event" ^superviseCallRes

Network Released

Finished

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

In state Idle a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object should be destroyed and

callFaultDetected should be reported to

the application.

Active

2 Parties in

Call

1 Party in

Call

2 Parties in

Call

1 Party in

Call

IpAppCallControlManager.callEventNotify

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt] ^routeRes,

getCallInfoRes, superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"network event received for which was monitored[routeRes]

_935227290.doc

