3GPP TSG_CN WG5#11

Tdoc N5-010362

San Diego, USA

20th – 24th May, 2001

Source:
Telcordia Technologies
Title:
Clarification of IpMultiPartyCall STD
Agenda item:

Document for:
DISCUSSION

1 Introduction

This contribution was partly discussed during the ad-hoc meeting in Antwerp, a number of improvements were suggested and are reflected. Subsequent improvements were suggested during the ad-hoc conference call. These are mentioned in the Change Log.

2 Overview

This bullet list gives an overview of the main changes proposed in this document:

· Changed event order. It is now explicitly stated that events are sent prior to state processing (on entry).

· attachMedia and detachMedia changed into setMediaAttached and getMediaAttached. It was discovered that an application couldn’t tell if the media is currently attached or not.

· GetState. Stateless applications can use this method to learn in what state the call leg currently is. This is a convenience method.

· Added authorizing state. In this state the attempt to route a call leg can be authorized. Typically ‘screening’ applications trigger on this state transition.

· SetTargetAddress. This methods allows to change the collected address.

· Associated one event per state. Each event signals and important phase in the call leg processing. Application trigger on these events, they can interrupt processing and alter its course through invoking API methods.

· Renamed call_attempt event in call_leg_created event. The authors believe that this name covers the circumstances in which the event is fired. It is proposed to send this event on creation of a new call leg.

· Introduction of the failed event and state. This event informs the application something fault occurred.

· Removal of the redirected event. The authors could identify no call leg state that would support the emission of this event.

· Removal of the disarming rules. In light of the call legs STD over haul and the proposed transitions the authors felt this table would need to be updated.

· Removal of eventReportRes methods in the STD. It was agreed that proper inclusion of these methods would result in many transitions, effectively clouding the STD without adding new information. Text prior to the STD clarifies the result of eventReportRes method.

3 Change Log

	Date
	Change
	Source

	April 11, 2001
	Initial release
	John-Luc Bakker

	May 4, 2001
	· Accepted all blue changes

· Updated getState method

· Checked pre/post conditions

· Applied “no state change” notation to post conditions

· Fixed routeReq documentation

· Fixed get/setMedia omissions

· Updated Call Leg STD

· Added setTargetAddress

· Made Call Legs immutable

· Added in semantics whether a method unblocks processing or not

· Enhanced semantics of getLastRedirectedAddress()

	Ad-hoc meeting

	May 17, 2001
	· Removal of eventReportRes methods in the STD

· Re-renamed get/setMedia into getMediaAttached and setMediaAttached

	Ad-hoc meeting

7.3.5 Interface Class IpCallLeg
Inherits from: IpService
The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events.
	<<Interface>>

IpCallLeg

	IDLE : int = 1

AUTHORIZE_ATTEMPT : int = 2

ADDRESS_COLLECT : int = 3

ADDRESS_ANALYZE : int = 4
CALL_DELIVERY : int = 5
ALERTING : int = 6

CONNECTED : int = 7

DISCONENCTED : int = 8
FAILED : int = 9

	routeReq (callLegSessionID : in TpSessionID) : TpResult
setTargetAddress (callLegSessionID : in TpSessionID, digits : in TpString) : TpResult
eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : TpResult

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult

getCall (callLegSessionID : in TpSessionID, callReference : out TpMultiPartyCallIdentifierRef) : TpResult

setMediaAttached (callLegSessionID : in TpSessionID, mediaStatus : in TpBoolean) : TpResult

getMediaAttached (callLegSessionID : in TpSessionID, mediaStatus : out TpBoolean) : TpResult

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectedAddress : out TpAddressRef) : TpResult

continueProcessing (callLegSessionID : in TpSessionID) : TpResult

getMoreDialledDigitsReq (callLegSessionID : in TpSessionID, length : in TpInt32) : TpResult

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in TpDuration) : TpResult

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

deassign (callLegSessionID : in TpSessionID) : TpResult

getState(callLegSessionID : in TpSessionID) : int

Method

getState()

This method is used to retrieve the state. It does not unblock processing.
Pre conditions:

All states

Post condition:

No change

Parameters

callLegSessionID : in TpSessionID
Specifies the call session ID of the call leg.
Raises

TpGCCSException,TpGeneralException
Method

routeReq()

This asynchronous method requests routing of the call leg to the remoteparty. This method unblocks processing.

Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE
“Call Leg state” == IpMultiPartyCallLeg.IDLE
Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE
“Call Leg state” == IpMultiPartyCallLeg.AUTHORIZE_ATTEMPT
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpGeneralException,TpGCCSException
Method

setTargetAddress()

This method changes the collected address and unblocks processing.

Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.ADDRESS_COLLECT || IpMultiPartyCallLeg.ADDRESS_ANALYSE
Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.ADDRESS_ANALYSE
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
digits : in TpString
The information that makes up the target address.
Raises

TpGeneralException,TpGCCSException
Method

eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe. This method does not unblock processing.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.IDLE ||

IpMultiPartyCallLeg.AUTHORIZE_ATTEMPT

Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "address analysed", "answer", "release".
Raises

TpGeneralException,TpGCCSException
Method

release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the network. The application will be informed of this with callEnded(). This method unblocks processing.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” != IpMultiPartyCallLeg.DISCONNECTED
Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.DISCONNECTED

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGeneralException,TpGCCSException
Method

getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted. This method does not unblock processing.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.IDLE ||

IpMultiPartyCallLeg.AUTHORIZE_ATTEMPT

Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.
Raises

TpGeneralException,TpGCCSException
Method

getCall()

This method requests the call associated with this call leg. This method does not unblock processing.
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callReference : out TpMultiPartyCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.
Pre conditions:

Always

Post condition:

No change
Raises

TpGeneralException,TpGCCSException
Method

setMediaAttached()

This method requests that the media should be attached or detached. This will allow transmission on all associated bearer connections or media channels to and from other parties in the call. This method unblocks processing.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.CONNECTED || IpMultiPartyCallLeg.ALERTING
Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.
mediaStatus : in TpBoolean

True specifies that the media should be attached, false that should be detached.

Raises

TpGeneralException,TpGCCSException
Method

getMediaAttached()

This method will inform the application whether the medis is attached or detached, i.e., whether transmission on any associated bearer connections or media channels to and from other parties in the call is enabled. This method unblocks processing.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.CONNECTED

Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg. CONNECTED

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.
mediaStatus : out TpBoolean

True specifies that the media is attached, false that it is detached.

Raises

TpGeneralException,TpGCCSException
Method

getLastRedirectedAddress()

Queries the last address the leg has been redirected to. This method is only valid on a terminating call leg and does not unblock processing.
Pre conditions:

Always

Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.
redirectedAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.
Raises

TpGeneralException,TpGCCSException
Method

continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was interrupted due to detection of a notification or event the application subscribed its interest in.
Pre conditions:

Always

Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpGeneralException,TpGCCSException
Method

getMoreDialledDigitsReq()

This asynchronous method requests to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets an ADDRESS_COLLECT event which contains no digits or only the few dialled digits in the event data. The application should then use this method if it requires more dialled digits, e.g. to perform screening. This method does not unblock.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.ADDRESS_COLLECT

Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call.
length : in TpInt32

Specifies the maximum number of digits to collect.
Raises

TpGeneralException, TpGCCSException
Method

setChargePlan()

Set an operator specific charge plan for the cal leg. The charge plan must be set before the call leg is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE
“Call Leg state” != IpMultiPartyCallLeg.CONNECTED || IpMultiPartyCallLeg.DISCONNECTED || IpMultiPartyCallLeg.FAILED

Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.
callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.
Raises

TpGeneralException,TpGCCSException
Method

setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” != IpMultiPartyCallLeg.CONNECTED || IpMultiPartyCallLeg.DISCONNECTED || IpMultiPartyCallLeg.FAILED

Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.
aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.
tarrifSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.
Raises

TpGeneralException,TpGCCSException
Method

superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call. If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will start as soon as the call is answered by the terminating party or the user interaction system.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.IDLE

Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.
time : in TpDuration

Specifies the granted time in milliseconds for the connection.
treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.
Raises

TpGeneralException,TpGCCSException
Method

deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call leg when it is finished with the call leg.
Pre conditions:

Always

Post condition:

No change
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpGeneralException,TpGCCSException
7.3.6 Interface Class IpAppCallLeg
Inherits from: IpInterface
The application call leg interface is implemented by the client application developer and is used to handle responses and errors associated with requests on the call leg in order to be able to receive leg specific information and events.
	<<Interface>>

IpAppCallLeg

	

	eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : TpResult

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : TpResult

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : TpResult

superviseErr (callLegSessionID : TpSessionID, errorIndication : in TpCallError) : TpResult

connectionEnded (callLegSessionID : TpSessionID, cause : TpCallReleaseCause) : TpResult

Method

eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-called disarming rules are captured in the data definition of the event type.
Pre conditions:

Always
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.
eventInfo : in TpCallEventInfo

Specifies data associated with this event.
Raises

TpGeneralException,TpGCCSException
Method

eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.).
Pre conditions:

Always
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.
Pre conditions:
“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE
“Call Leg state” == IpMultiPartyCallLeg.DISCONNECTED

Post condition:

No change

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.
callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.
Raises

TpGeneralException,TpGCCSException
Method

getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.DISCONNECTED

Post condition:

No change

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

routeErr()

Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.IDLE

Post condition:

No change

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCallLeg.ADDRESS_COLLECT

Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.
Raises

TpGeneralException,TpGCCSException
Method

getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCallLeg.ADDRESS_COLLECT
Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.DISCONNECTED

Post condition:

No change

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg
report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.
usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).
Raises

TpGCCSException,TpGeneralException
Method

superviseErr()

Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call Leg state” == IpMultiPartyCallLeg.DISCONNECTED

Post condition:

No change

Parameters

callLegSessionID : TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

connectionEnded()

This method indicates to the application that the connection has terminated in the network. Note that the event that caused the connection to end might also be received separately if the application was monitoring for it.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

Post condition:

No change
Parameters

callLegSessionID : TpSessionID

Specifies the call leg session ID of the call leg.
cause : TpCallReleaseCause

Specifies the reason the connection is terminated.
Raises

TpGeneralException,TpGCCSException
7.6.2 State Transition Diagrams for IpCallLeg

This State Transition Diagram shows call backs and notifications that can occur if application has registered for these events. The events are sent after the state has been reached, thus ‘on-entry’. The State Transition Diagram does not show the eventReportRes messages that are sent on entry of a state. Upon receipt of such a method the application is informed of the transition from the previous state to the current state.
The Diagram uses colors to distinguish between terminating leg specific transitions and originating leg specific transitions: red colored transitions show those that are applicable to both, blue colored transitions are applicable to originating call legs, and green colored transition to terminating call legs.
[image: image1.jpg]Ps oreatecallLe

lincoming oall signal

reportuotificstion(s_oau

Trestemnmmtec LLeg,

“reportiotification(p_CALL LG AVTHOREZE) ([FuwoRzan

soutared, "oall leg
abjeo] orested”

“reminsting call Le

transition

“sbout to colllect digits”

“reportiotification(p_CALL LEG_AALYZE)

“reportuotification(p_caiL Lee corueer) (RBDRESS_ | FewerepisledbigiteReq
corvzert i,
advacs

SetTacgetnddress, "digits collested into targdt address”

~ceporthotification(p_caLL LEG_cALL DRLIVERY)

Buammamss

target address analy:

“tacget.

“reportiotification(p_CALL LEG_comecTen) [GamiEe

L vaTia states swoet
‘DISCONECTED and FATLED

tear
release, "disso

originating call
beeportotitiostion(p_caLL_Lee_neszne T Leg transition’,
comeote

AL v
Statas

sign

Figure : Application view on the CallLeg object

7.6.2.1 IDLE State
Entry criteria: Start of a new call.

Functions: Indicates the creation of a new call leg object.
Exit criteria: An indication of the desire to place an outgoing call or when the indication of an incoming call is received.
7.6.2.2 AUTHORIZE_ATTEMPT State
Entry criteria: An indication that the originating or terminating terminal needs to be authorized for the call.

Functions: The originating or terminating terminal characteristics should be verified using the calling party's identity and service profile. The authority/ability of the party to place the call with given properties is verified. The types of authorization may vary for different types of originating and terminating resources.

Exit criteria: This state is exited on receiving indication of the success or failure of the authorization process. The originating call leg moves to the ADDRESS_COLLECT state while the terminating call leg has to move to the CALL_LEG_DELIVERY. Thus, the terminating call leg cannot be either in the ADDRESS_COLLECT or the ADDRESS_ANALYZE states.
7.6.2.3 ADDRESS_COLLECT State
Entry criteria: The call leg object enters this state with the originating party having been authorized for this call or when the implementation has progressed to the CALL_LEG_DELIVERY state but found that the routing information was incomplete.

Functions: In this state the initial information package is collected from the originating party. Information is examined according to dialing plan to determine the end of collection. No further action may be required if en bloc signaling method is in use.

Exit criteria: This state is exited either because routeReq(…) was invoked, the complete initial information package or dialing string has been collected from the originating party or because of failure to collect information or even due to reception of invalid information from the caller. Timeout and abandon indications may also cause the exit from this state.
7.6.2.4 ADDRESS_ANALYZE State
Entry criteria: This state is entered on the availability of complete initial information package/dialing string from the originating party or when it has changed (in response to rerouting).
Functions: The information collected is analyzed and/or translated according to a dialing plan to determine routing address and call type (e.g. local exchange call, transit exchange call, international exchange call).

Exit criteria: This state is exited on the availability of routing address, rerouting initiated during processing of this state will cause a self transition. Invalid information and Abandon indications also cause transition out of this state. Exception criteria such as network busy, abandon, route busy etc. will cause exit from this state.
7.6.2.5 CALL_LEG_DELIVERY State
Entry criteria: This state is entered on the originating side when the routing address and call type are available. On the terminating side this state is entered when the termination attempt to the address is authorized.

Function: On the originating side this state involves selecting of the route as well as sending an indication of the desire to set up a call leg to the specified called party. On the terminating side this state involves checking the status of the terminating access and also informing the terminating terminal of an incoming call.

Exit criteria: This state is exited on the originating side when criteria such as receipt of an alerting indication or call accepted is received from the terminating call leg portion. This state is exited on the terminating side when the terminating party is being alerted or the call is accepted.
7.6.2.6 ALERTING State
Entry criteria: This state is entered when the terminating party is being alerted of an incoming call.

Function: An indication is sent to the originating party that the terminating party is being alerted.

Exit criteria: This state is exited when the call is accepted and answered by the terminating party. Exception criteria such as CallRejected, NoAnswer and Abandon if possible all cause exit from this state.
7.6.2.7 CONNECTED State
Entry criteria: This state is entered when the Call is accepted and answered by the terminating party.

Function: In this state several processes related to message accounting/charging, call supervision etc. may be initiated if such a capability is provided by the implementation.

Exit criteria: Exception criteria such as disconnect cause exit from this state.
7.6.2.8 DISCONNECTED State
Entry criteria: This state is entered when a disconnect indication is received from the corresponding party or the application.

Function: The (bearer) connection to the party is disconnected and depending on the incoming network connection, appropriate backward signaling takes place.

Exit criteria:
7.6.2.9 FAILED State
Entry criteria: This state is entered when an exception condition is encountered.

Function: Default handling of the exception condition is provided.

Exit criteria: Default handling of the exception condition by the implementation is completed.
7.6.2.10

7.6.2.11

7.6.2.12

7.6.2.13

7.6.2.14

7.6.2.15

7.6.2.16

7.6.2.17

7.6.2.18

7.6.2.19

7.6.3 Multi-Party Call Control Data Definitions

[..]

TpCallEventType

Defines a specific call event report type.

	Name
	Value
	Description

	P_CALL_EVENT_UNDEFINED
	0
	Undefined

	P_CALL_ LEG_EVENT_CREATED
	1
	An originating call leg (e.g. in response to Offhook event) or a terminating call leg is created

	P_CALL_LEG_AUTHORIZE
	2
	This state implies that the originating or terminating terminal needs to be authorized for the call

	P_CALL_LEG_EVENT_COLLECTING
	3
	The destination address will be collected

	P_CALL__LEG_EVENT_ANALYSE
	4
	The destination address will be analysed

	P_CALL_LEG_EVENT_DELIVERY
	5
	On the originating side this state involves selecting of the route as well as sending an indication of the desire to set up a call to the specified called party. On the terminating side this state is involves checking the busy/idle status of the terminating access and also informing the terminating message of an incoming call

	P_CALL_LEG EVENT_ALERTING
	6
	Call is alerting at the call party

	P_CALL_LEG_EVENT_CONNECTED
	7
	Call answered at address

	P_CALL_LEG_EVENT_DISCONNECTED
	8
	A Call leg has been released

	
	
	

	P_CALL_LEG_EVENT_FAILED
	9
	This state is entered when an exception condition is encountered

	P_CALL_LEG_EVENT_SERVICE_CODE
	10
	Mid-call service code received

	
	
	

	occurred
	

	
	

	
	

	
	

	
	

	
	

	
	

·
·
·
·
·
·

	
	

·
·
·
·
·
·
·
·

	
	

	
	

	
	

TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.
	
	Tag Element Type
	

	
	TpCallEventType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_LEG_EVENT_UNDEFINED
	NULL
	Undefined

	P_CALL_EVENT_LEG_CREATED
	NULL
	Undefined

	P_CALL_LEG_EVENT_AUTHORE
	NULL
	Undefined

	P_CALL_LEG_EVENT_ADDRESS_COLLECT
	TpInt32
	MinAddressLength

	P_CALL_LEG_EVENT_ADDRESS_ANALYZE
	NULL
	Undefined

	P_CALL_ LEG_EVENT_DELIVERY
	NULL
	Undefined

	P_CALL_LEG_EVENT_ALERTING
	NULL
	Undefined

	P_CALL_LEG_EVENT_CONNECTED
	NULL
	Undefined

	P_CALL_LEG_EVENT_DISCONNECTED
	TpCallReleaseCauseSet
	ReleaseCauseSet

	P_CALL_LEG_EVENT_FAILED
	NULL
	Undefined

	P_CALL_EVENT_SERVICE_CODE
	TpCallServiceCode
	ServiceCode

	
	
	

