3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #11, San Diego, US, 21 – 24 May 2001
Tdoc N5-010xyz

Source:
Musa Unmehopa (Lucent Technologies), unmehopa@lucent.com
Title:
QoS Parameters for Data Session Control

Agenda Item:

Document for:
Approval

Category:
other

Work Item ID:
OSA

Doc Summary:

Specs involved:
DES/SPAN-120070 Part 8 Data Session Control
Introduction

For Release 4, TSG SA1 has specified the requirement for notification of Quality of Service parameters of the data session to the application in 3G TS 22.127. It is generally accepted that tariffs for data sessions should include an element based on the QoS negotiated. Lucent Technologies has previously submitted a proposal for the addition of QoS parameters for Release 99 at the S2 OSA Drafting Session in Sophia Antipolis on 14-15 June 2000 (S2-001133) and at the third CN5 meeting in Cardiff on 13-14 June 2000 (N5-000073). Considering the fact that the Release 99 deadline was closing in fast and work still had to be done on the QoS IDL data types both S2 and CN5 decided not to agree on this proposal at that time. For this joint 3GPP, ETSI, and Parlay meeting Lucent Technologies would like to resubmit the QoS parameter proposal, supplemented with a proposal for the data type definitions and IDL specification. Lucent Technologies would like to kindly request the meeting to consider this proposal for approval and inclusion in DES/SPAN-120070 Part 8 and 3G TS 29198-08.

Discussion

The discussion section of this paper is intended to provide some background information as to the requirements for QoS capabilities in OSA as well as some QoS definitions and classifications.

3GPP S1 Requirements

The following is an abstract of 3G TS 22.127 v4.0.0.

12.2
Network functions

The Network functions represent the total collection of network resources.
The following subclauses define generic network functions e.g. for Session Control and Message Transfer.

12.2.1
Call Control functions

This subclause details with Call Control functions. The purpose of this function is to allow applications to control and monitor calls.

The application may request the quality of service when first negotiated at the start of the call and may also request the network to notify the application of any changes in QoS (conversational, background, interactive and streaming class - see [4]) which take place during the call.

For QoS information, the Call Control Function allows applications to monitor the amount of used traffic channels and bandwidth (e.g. for HSCSD) and used timeslots (e.g. for GPRS).

3GPP QoS Classes

The following is an abstract of 3G TS 23.107 v3.5.0.

6.3
UMTS QoS Classes

When defining the UMTS QoS classes, also referred to as traffic classes, the restrictions and limitations of the air interface have to be taken into account. It is not reasonable to define complex mechanisms as have been in fixed networks due to different error characteristics of the air interface. The QoS mechanisms provided in the cellular network have to be robust and capable of providing reasonable QoS resolution. Table 1 illustrates the QoS classes for UMTS.

There are four different QoS classes:

-
conversational class;

-
streaming class;

-
interactive class; and

-
background class.

The main distinguishing factor between these QoS classes is how delay sensitive the traffic is: Conversational class is meant for traffic which is very delay sensitive while Background class is the most delay insensitive traffic class.

Conversational and Streaming classes are mainly intended to be used to carry real-time traffic flows. The main divider between them is how delay sensitive the traffic is. Conversational real-time services, like video telephony, are the most delay sensitive applications and those data streams should be carried in Conversational class.

Interactive class and Background are mainly meant to be used by traditional Internet applications like WWW, Email, Telnet, FTP and News. Due to looser delay requirements, compare to conversational and streaming classes, both provide better error rate by means of channel coding and retransmission. The main difference between Interactive and Background class is that Interactive class is mainly used by interactive applications, e.g. interactive Email or interactive Web browsing, while Background class is meant for background traffic, e.g. background download of Emails or background file downloading. Responsiveness of the interactive applications is ensured by separating interactive and background applications. Traffic in the Interactive class has higher priority in scheduling than Background class traffic, so background applications use transmission resources only when interactive applications do not need them. This is very important in wireless environment where the bandwidth is low compared to fixed networks.

Resultant Changes

The following section identifies the resultant changes to DES/SPAN-120070-08 and 3G TS 29198-08.

8
Data Session Control Interface Classes

The Data Session Control provides a means to control per data session basis the establishment of a new data session. This means especially in the GPRS context that the establishment of a PDP session is modelled not the attach/detach mode. Change of terminal location is assumed to be managed by the underlying network and is therefore not part of the model. The underlying assumption is that a terminal initiates a data session and the application can reject the request for data session establishment, can continue the establishment or can continue and change the destination as requested by the terminal.
The modelling is hold similar to the Generic Call Control but assuming a simpler underlying state model. An IpDataSessionManager and IpData Session object are the interfaces used by the application, whereas the IpAppDataSessionManager and the IpAppDataSession interfaces are implemented by the application.
8.1
Interface Class IpAppDataSession

Inherits from: IpInterface.
The application side of the data session interface is used to handle data session request responses and state reports.

<<Interface>>

IpAppDataSession

connectRes (dataSessionID : in TpSessionID, eventReport : in TpDataSessionReport, assignmentID : in TpAssignmentID) : TpResult

connectErr (dataSessionID : in TpSessionID, errorIndication : in TpDataSessionError, assignmentID : in TpAssignmentID) : TpResult

superviseDataSessionRes (dataSessionID : in TpSessionID, report : in TpDataSessionSuperviseReport, usedVolume : in TpDataSessionSuperviseVolume, qualityOfService : in TpDataSessionQosClass) : TpResult

superviseDataSessionErr (dataSessionID : in TpSessionID, errorIndication : in TpDataSessionError) : TpResult

dataSessionFaultDetected (dataSessionID : in TpSessionID, fault : in TpDataSessionFault) : TpResult

Method

connectRes()

This asynchronous method indicates that the request to connect a data session with the destination party was successful, and indicates the response of the destination party (e.g. connected, disconnected).

Parameters

dataSessionID: in TpSessionID

Specifies the session ID of the data session.
eventReport: in TpDataSessionReport

Specifies the result of the request to connect the data session. It includes the network event, date and time, monitoring mode, negotiated quality of service and event specific information such as release cause.
assignmentID: in TpAssignmentID

Raises

TpDSCSException,TpGeneralException
Method

connectErr()

This asynchronous method indicates that the request to connect a data session with the destination party was unsuccessful, e.g. an error detected in the network or the data session was abandoned.

Parameters

dataSessionID: in TpSessionID

Specifies the session ID.
errorIndication: in TpDataSessionError

Specifies the error which led to the original request failing.
assignmentID: in TpAssignmentID

Raises

TpDSCSException,TpGeneralException
Method

superviseDataSessionRes()

This asynchronous method reports a data session supervision event to the application. In addition, it may also be used to notify the application of a newly negotiated set of Quality of Service parameters during the active life of the data session.
Parameters

dataSessionID: in TpSessionID

Specifies the data session.
report: in TpDataSessionSuperviseReport

Specifies the situation, which triggered the sending of the data session supervision response.
usedVolume: in TpDataSessionSuperviseVolume

 Specifies the used volume for the data session supervision (in the same unit as specified in the request).
qualityOfService: in TpDataSessionQosClass

Specifies the newly negotiated Quality of Service parameters for the data session.
Raises

TpDSCSException,TpGeneralException
Method

superviseDataSessionErr()

This asynchronous method reports a data session supervision error to the application.

Parameters

dataSessionID: in TpSessionID

 Specifies the data session ID.
errorIndication: in TpDataSessionError

Specifies the error which led to the original request failing.
Raises

TpDSCSException,TpGeneralException
Method

dataSessionFaultDetected()

This method indicates to the application that a fault in the network has been detected which can't be communicated by a network event, e.g., when the user aborts before any establishment method is called by the application.

The system purges the Data Session object. Therefore, the application has no further control of data session processing. No report will be forwarded to the application.

Parameters

dataSessionID: in TpSessionID

Specifies the data session ID of the Data Session object in which the fault has been detected
fault: in TpDataSessionFault

Specifies the fault that has been detected.
Raises

TpDSCSException,TpGeneralException
8.2
Interface Class IpAppDataSessionControlManager

Inherits from: IpInterface.
The data session control manager application interface provides the application data session control management functions to the Data Session Control SCF.

<<Interface>>

IpAppDataSessionControlManager

dataSessionAborted (dataSession : in TpSessionID) : TpResult

reportNotification (dataSessionReference : in TpDataSessionIdentifier, eventInfo : in TpDataSessionEventInfo, assignmentID : in TpAssignmentID, appDataSession : out IpAppDataSessionRefRef) : TpResult

dataSessionNotificationContinued () : TpResult

dataSessionNotificationInterrupted () : TpResult

Method

dataSessionAborted()

This method indicates to the application that the Data Session object has aborted or terminated abnormally. No further communication will be possible between the Data Session object and the application.

Parameters

dataSession: in TpSessionID

Specifies the session ID of the data session that has aborted or terminated abnormally.
Raises

TpDSCSException,TpGeneralException
Method

reportNotification()

This method notifies the application of the arrival of a data session-related event.

Parameters

dataSessionReference: in TpDataSessionIdentifier

Specifies the session ID and the reference to the Data Session object to which the notification relates.
eventInfo: in TpDataSessionEventInfo

Specifies data associated with this event. This data includes the destination address provided by the end-user and the quality of service requested or negotiated for the data session.
assignmentID: in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment ID to associate events with event-specific criteria and to act accordingly.
appDataSession: out IpAppDataSessionRefRef

Specifies a reference to the application object which implements the callback interface for the new data session.
Raises

TpDSCSException,TpGeneralException
Method

dataSessionNotificationContinued()

This method indicates to the application that all event notifications are resumed.

Parameters

No Parameters were identified for this method

Raises

TpDSCSException,TpGeneralException
Method

dataSessionNotificationInterrupted()

This method indicates to the application that event notifications will no longer be sent (for example, due to faults detected).

Parameters

No Parameters were identified for this method

Raises

TpDSCSException,TpGeneralException
10.2 Event Notification data definitions

TpDataSessionEventName

Defines the names of events being notified with a new call request. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the call process are found in the TpDataSessionReportType data-type.

Name
Value
Description

P_EVENT_NAME_UNDEFINED
0
Undefined

P_EVENT_DSCS_SETUP
1
The data session is going to be setup.

P_EVENT_DSCS_ESTABLISHED
2
The data session is established by the network.

P_EVENT_DSCS_QOS_CHANGED
3
A change in QoS class has taken place during the ife of the data session.

TpDataSessionMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name
Value
Description

P_DATA_SESSION_MONITOR_MODE_INTERRUPT
0
The data session event is intercepted by the data session control service and data session establishment is interrupted. The application is notified of the event and data session establishment resumes following an appropriate API call or network event (such as a data session release)

P_DATA_SESSION_MONITOR_MODE_NOTIFY
1
The data session event is detected by the data session control service but not intercepted. The application is notified of the event and data session establishment continues

P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR
2
Do not monitor for the event

TpDataSessionEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested.

OriginatingAddress
TpAddressRange
Defines the origination address or a address range for which the notification is requested.

DataSessionEventName
TpDataSessionEventName
Name of the event(s)

MonitorMode
TpDataSessionMonitorMode
Defines the mode that the Data Session is in following the notification.
Monitor mode P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here.

TpDataSessionEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Data Session event notification.

Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddress
Defines the destination address for which the notification is reported.

OriginatingAddress
TpAddress
Defines the origination address for which the notification is reported.

DataSessionEventName
TpDataSessionEventName
Name of the event(s)

MonitorMode
TpDataSessionMonitorMode
Defines the mode in which the Data Session is reporting the notification.
Monitor mode P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here.

QoSClass
TpDataSessionQosClass
Defines the Quality of Service (QoS) class for the Data Session. QoSClass NULL is not a legal value when DataSessionEventName is set to P_EVENT_DSCS_QOS_CHANGED. For this particular event, the QoSClass defines the new QoS class effective after the change.

TpDataSessionQosClass

Defines the Quality of Service (QoS) classes for a data session.
Name
Value
Description

P_DATA_SESSION_QOS_CLASS_CONVERSATIONAL
0
Specifies the Conversational QoS class, as specified in 3G TS 23.107.

P_DATA_SESSION_QOS_CLASS_STREAMING
1
Specifies the Streaming QoS class, as specified in 3G TS 23.107.

P_DATA_SESSION_QOS_CLASS_INTERACTIVE
2
Specifies the Interactive QoS class, as specified in 3G TS 23.107.

P_DATA_SESSION_QOS_CLASS_BACKGROUND
3
Specifies the Background QoS class, as specified in 3G TS 23.107.

TpDataSessionChargePlan
Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name
Sequence Element Type
Description

ChargeOrderType
TpDataSessionChargeOrder
Charge order

Currency
TpString
Currency unit according to ISO-4217:1995 [4]

AdditionalInfo
TpString
Descriptive string which is sent to the billing system without prior evaluation. Could be included in the ticket.

<unmodified text>

TpDataSessionFault
Defines the cause of the data session fault detected.

Name
Value
Description

P_DATA_SESSION_FAULT_UNDEFINED
0
Undefined

P_DATA_SESSION_USER_ABORTED
1
User has finalised the data session before any message could be sent by the application

P_DATA_SESSION_TIMEOUT_ON_RELEASE
2
This fault occurs when the final report has been sent to the application, but the application did not explicitly release data session object, within a specified time.

The timer value is operator specific.

P_DATA_SESSION_TIMEOUT_ON_INTERRUPT
3
This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

//Source file: dsc.idl

//IDL file for 3GPP TS 29.198 Part 8 (Data Session Control) Release 4

//Date: 7th March 2001

#ifndef __DSC_DEFINED

#define __DSC_DEFINED

#include "osa.idl"

module org {

module open_service_access {

module dsc {

interface IpDataSession;

const TpInt32 P_DATA_SESSION_SUPERVISE_INFORM = 4;

const TpInt32 P_DATA_SESSION_SUPERVISE_DATA_SESSION_ENDED = 2;

const TpInt32 P_DATA_SESSION_SUPERVISE_MESSAGE_SENT = 4;

const TpInt32 P_DATA_SESSION_SUPERVISE_RELEASE = 1;

const TpInt32 P_DATA_SESSION_SUPERVISE_RESPOND = 2;

const TpInt32 P_DATA_SESSION_SUPERVISE_VOLUME_REACHED = 1;

const TpInt32 P_DSCS_INVALID_ADDDRESS = 1027;

const TpInt32 P_DSCS_INVALID_CRITERIA = 1029;

const TpInt32 P_DSCS_INVALID_NETWORK_STATE = 1030;

const TpInt32 P_DSCS_INVALID_STATE = 1028;

const TpInt32 P_DSCS_SERVICE_FAULT_ENCOUNTERED = 1025;

const TpInt32 P_DSCS_SERVICE_INFORMATION_MISSING = 1024;

const TpInt32 P_DSCS_UNEXPECTED_SEQUENCE = 1026;

struct TpChargePerVolume {

TpInt32 InitialCharge;

TpInt32 CurrentChargePerKilobyte;

TpInt32 NextChargePerKilobyte;

};

enum TpDataSessionChargeOrderCategory {

P_DATA_SESSION_CHARGE_PER_VOLUME,

P_DATA_SESSION_CHARGE_NETWORK

};

union TpDataSessionChargeOrder switch(TpDataSessionChargeOrderCategory) {

case P_DATA_SESSION_CHARGE_PER_VOLUME: TpChargePerVolume ChargePerVolume;

case P_DATA_SESSION_CHARGE_NETWORK: TpString NetworkCharge;

};

struct TpDataSessionChargePlan {

TpDataSessionChargeOrder ChargeOrderType;

TpString Currency;

TpString AdditionalInfo;

};

enum TpDataSessionErrorType {

P_DATA_SESSION_ERROR_UNDEFINED,

P_DATA_SESSION_ERROR_INVALID_ADDRESS,

P_DATA_SESSION_ERROR_INVALID_STATE

};

union TpDataSessionAdditionalErrorInfo switch(TpDataSessionErrorType) {

case P_DATA_SESSION_ERROR_INVALID_ADDRESS: TpAddressError DataSessionErrorInvalidAddress;

};

struct TpDataSessionError {

TpDateAndTime ErrorTime;

TpDataSessionErrorType ErrorType;

TpDataSessionAdditionalErrorInfo AdditionalErrorInfo;

};

typedef TpInt32 TpDataSessionEventName;

typedef TpInt32 TpDataSessionQosClass;

enum TpDataSessionFault {

P_DATA_SESSION_FAULT_UNDEFINED,

P_DATA_SESSION_FAULT_USER_ABORTED,

P_DATA_SESSION_TIMEOUT_ON_RELEASE,

P_DATA_SESSION_TIMEOUT_ON_INTERRUPT

};

enum TpDataSessionMonitorMode {

P_DATA_SESSION_MONITOR_MODE_INTERRUPT,

P_DATA_SESSION_MONITOR_MODE_NOTIFY,

P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR

};

struct TpDataSessionEventCriteria {

TpDataSessionMonitorMode MonitorMode;

TpAddressRange DestinationAddress;

TpAddressRange OriginationAddress;

TpDataSessionEventName DataSessionEventName;

};

struct TpDataSessionEventInfo {

TpAddress DestinationAddress;

TpAddress OriginatingAddress;

TpDataSessionEventName DataSessionEventName;

TpDataSessionMonitorMode MonitorMode;
 TpDataSessionQosClass QoSClass;

};

struct TpDataSessionReleaseCause {

TpInt32 Value;

TpInt32 Location;

};

enum TpDataSessionReportType {

P_DATA_SESSION_REPORT_UNDEFINED,

P_DATA_SESSION_REPORT_CONNECTED,

P_DATA_SESSION_REPORT_DISCONNECT

};

union TpDataSessionAdditionalReportInfo switch(TpDataSessionReportType) {

case P_DATA_SESSION_REPORT_DISCONNECT: TpDataSessionReleaseCause DataSessionDisconnect;

};

struct TpDataSessionReport {

TpDataSessionMonitorMode MonitorMode;

TpDateAndTime DataSessionEventTime;

TpDataSessionReportType DataSessionReportType;

TpDataSessionAdditionalReportInfo AdditionalReportInfo;

};

struct TpDataSessionReportRequest {

TpDataSessionMonitorMode MonitorMode;

TpDataSessionReportType DataSessionReportType;

};

typedef sequence <TpDataSessionReportRequest> TpDataSessionReportRequestSet;

typedef TpInt32 TpDataSessionSuperviseReport;

typedef TpInt32 TpDataSessionSuperviseTreatment;

struct TpDataSessionSuperviseVolume {

TpInt32 VolumeQuantity;

TpInt32 VolumeUnit;

};

exception TpDSCSException {

TpInt32 exceptionType;

};

struct TpDataSessionIdentifier {

IpDataSession DataSessionReference;

TpSessionID DataSessionID;

};

const TpInt32 P_EVENT_NAME_UNDEFINED = 0;

const TpInt32 P_EVENT_DSCS_SETUP = 1;

const TpInt32 P_EVENT_DSCS_ESTABLISHED = 2;
 const TpInt32 P_EVENT_DSCS_QOS_CHANGED = 3;
 const TpInt32 P_DATA_SESSION_QOS_CLASS_CONVERSATIONAL = 0;

 const TpInt32 P_DATA_SESSION_QOS_CLASS_STREAMING = 1;
 const TpInt32 P_DATA_SESSION_QOS_CLASS_INTERACTIVE = 2;
 const TpInt32 P_DATA_SESSION_QOS_CLASS_BACKGROUND = 3;

interface IpAppDataSession : IpInterface {

void connectRes (

in TpSessionID dataSessionID,

in TpDataSessionReport eventReport,

in TpAssignmentID assignmentID

)

raises (TpDSCSException,TpGeneralException);

void connectErr (

in TpSessionID dataSessionID,

in TpDataSessionError errorIndication,

in TpAssignmentID assignmentID

)

raises (TpDSCSException,TpGeneralException);

void superviseDataSessionRes (

in TpSessionID dataSessionID,

in TpDataSessionSuperviseReport report,

in TpDataSessionSuperviseVolume usedVolume,

 in TpDataSessionQosClass qualityOfService

)

raises (TpDSCSException,TpGeneralException);

void superviseDataSessionErr (

in TpSessionID dataSessionID,

in TpDataSessionError errorIndication

)

raises (TpDSCSException,TpGeneralException);

void dataSessionFaultDetected (

in TpSessionID dataSessionID,

in TpDataSessionFault fault

)

raises (TpDSCSException,TpGeneralException);

};

interface IpAppDataSessionControlManager : IpInterface {

void dataSessionAborted (

in TpSessionID dataSession

)

raises (TpDSCSException,TpGeneralException);

void reportNotification (

in TpDataSessionIdentifier dataSessionReference,

in TpDataSessionEventInfo eventInfo,

in TpAssignmentID assignmentID,

out IpAppDataSession appDataSession

)

raises (TpDSCSException,TpGeneralException);

void dataSessionNotificationContinued ()

raises (TpDSCSException,TpGeneralException);

void dataSessionNotificationInterrupted ()

raises (TpDSCSException,TpGeneralException);

};

interface IpDataSession : IpService {

void connectReq (

in TpSessionID dataSessionID,

in TpDataSessionReportRequestSet responseRequested,

in TpAddress targetAddress,

out TpAssignmentID assignmentID

)

raises (TpDSCSException,TpGeneralException);

void release (

in TpSessionID dataSessionID,

in TpDataSessionReleaseCause cause

)

raises (TpDSCSException,TpGeneralException);

void superviseDataSessionReq (

in TpSessionID dataSessionID,

in TpDataSessionSuperviseTreatment treatment,

in TpDataSessionSuperviseVolume bytes

)

raises (TpDSCSException,TpGeneralException);

void setDataSessionChargePlan (

in TpSessionID dataSessionID,

in TpDataSessionChargePlan dataSessionChargePlan

)

raises (TpDSCSException,TpGeneralException);

void setAdviceOfCharge (

in TpSessionID dataSessionID,

in TpAoCInfo aoCInfo,

in TpDuration tariffSwitch

)

raises (TpDSCSException,TpGeneralException);

};

interface IpDataSessionControlManager : IpService {

void createNotification (

in IpAppDataSessionControlManager appDataSessionControlManager,

in TpDataSessionEventCriteria eventCriteria,

out TpAssignmentID assignmentID

)

raises (TpDSCSException,TpGeneralException);

void destroyNotification (

in TpAssignmentID assignmentID

)

raises (TpDSCSException,TpGeneralException);

void changeNotification (

in TpAssignmentID assignmentID,

in TpDataSessionEventCriteria eventCriteria

)

raises (TpDSCSException,TpGeneralException);

void getNotification (

out TpDataSessionEventCriteria eventCriteria

);

};

};

};

};

#endif

Musa Unmehopa, +31 35 687 1684, unmehopa@lucent.com
Lucent Technologies, Bell Labs Innovations

