Page 1
Draft prETS 300 ???: Month YYYY

Page 2

Temporary document N5-010291Contr5STDCallLeg
3GPP TSG_CN5/ ETSI SPAN 12
21 to 24 May 2001
San Diego, USA

Source:
Alcatel/ Ericsson

Title:
CallLeg State Transition Diagram and Actions.

Date:
21 May 2001

Document for:
API for Open Service Access.
Agenda item:

1 Introduction

This contribution indicates the proposals for a revised state transition diagram for the IpCallLeg. It replaces section 7.4.3. It is based on the discussions held in the last Call Control Ad Hoc Group Meeting 18-20 April in Antwerp (for topics 1 to 14) and the subsequent audio conference meeting of 10 May (for topics 15 to 19). This contribution is based on the proposed resolution of discussed topics; with proposed changes which are indicated by strikethrough and underscore:

Topic1
Discussion:
Two interpretations for the callLegEnded were considered at the meeting namely:
Interpretation 1: This is the present situation. The callLegEnded is sent to indicate to the application that the connection has terminated in the network. The application can still receive some results. The application has to destroy the object by sending a deassign() method.
Interpretation 2: the callLegEnded is sent when the “last report” is detected in the Network_Released state. In this case all pending reports are handled in the “Network_Release” state. In this case the object may be destroyed by the API gateway.
Proposal:
The interpretation 1 was rejected at the meeting and interpretation 2 was accepted. It was further agreed that the Network_Released and Application_Released states should be merged into one Released State. The sending of the “last report”^callLegEnded method shall lead to the destruction of the CallLeg object. It was agreed that the connectionEnded() method shall be renamed to callLegEnded().
Topic 2
Discussion:
The P_CALL_EVENT_RELEASE for the release causes P_PREMATURE_DISCONNECT and P_DISCONNECT makes the callLegEnded superfluous. If there is a requirement then this can be fulfilled by arming the above mentioned disconnect events. It should be noted that in the case where e.g. two call legs are instantiated then two callLegEnded will be generated and additionally a callEnded will be sent.
Proposal:
It was agreed to send first the P_PREMATURE_DISCONNECT or P_DISCONNECT when armed and to send always the callLegEnded method, eventual call leg info and supervise reports will be sent to the Application server before the callLegEnded method is forwarded.

Topic 3 :
Discussion:
Trigger criteria need further definition because they are too restricted, presently only criteria are defined for the TpAddressRange. In INAP also criteria are defined for e.g. class of service, bearer capability, nature of address etc.
Proposal:
Contributions requested at the next meeting for further definition of the trigger criteria..

Topic 4:
Discussion
Call legs options as detailed in the Ericsson Contribution:
Gateway Call Legs Option 1 :
Network Call Legs Option 2
Proposal:
Option 1 was preferred. Only the methods createAndRouteCallLeg() and createCallLeg must be specified for the creation of legs when the Progressing (Delivery) state is reached. It was further agreed that the events causing the state transitions in the CallLeg SDT should be based on network indications. This should be made explicit in the specification. The setTargetAddress() method is not supported (see also topic 18)
Topic 5:
Discussion
The handling of service code information must be agreed upon.
Proposal:
It was agreed to have for the service code (mid-call) events arming to have only interrupt mode and no notify mode, to be performed only in the Active state.

Topic 6:
Discussion:
What actions are performed when the Network_Released state is entered.

Proposal:
When the Released state is entered the order of actions to be performed when a “release” indication is received is as follows:
i) the release event handling is performed.
ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the application.
iii) the callLegEnded() method is sent to the application.

Topic 7:
Discussion:
Is the handling of callLegEnded() still required if the event handling for release is also defined?
Proposal:
Yes

Topic 8:
Discussion
Should we support the mutable and immutable legs
Proposal:
Agreement to have only the immutable legs

Topic 9:
Discussion:
Should we have call attempt authorised for both the originating and destination call legs
Proposal:
The call attempt authorised is performed by the API Implementation and is modelled in the CallLeg STD

Topic 10
Discussion:
What states are entered for the originating and destination call leg report notifications.
Proposal:
Agreement to enter the ‘Authorising’ state for both the incoming and outgoing call leg “call attempt” report notification.

Topic 11: Discussion:
What state is entered when a RouteReq() method is send for an application created call leg:
Proposal:
Agreement to enter the Analyse_Address state for RouteReq() for legs created by the application..

Topic 12: Discusion:
What are the events and report notifications covered by the “Progress”
Proposal
It was agreed to delete the Progress events and notifications.

Topic 13: Discussion
What states support the setMedia and getMedia methods
Proposal
It is proposed that the Active state shall only support these methods
Topic 14 Discussion
In what states are the cut and paste, and select facility functionality supported
Proposal
The select facility functionality shall be supported by the under-laying network. See also topic 17 for the support of the cut and paste feature.
Topics discussed during the audio-conference meeting of 10 May 2001 which requires further discussion during e-mail before next Joint PARLAY /TSG_CN5/ETSI SPAN12 meeting (21-24 May 2001). The results of the e-mail discussion will be concluded at the San Diego meeting.

Topic 15
Discussion
Naming conventions for the STD CallLeg states
Agreements
The STD callLeg states shall be renamed such to reflect both the function performed by the state and the network indications which led to the entry to that state. The semantics of the presently defined call leg events shall not be changed. It was agreed that indications form the under-laying network as indicated between quotes (e.g. “Release”) are reflected into STD CallLeg state changes besides the API methods. It was agreed that the naming of states should be resolved by e-mail before Monday 14 May 08hr00 European time.
Proposal
The following state names are proposed in order to stimulated e-mail discussion: Idle, Authorising_CallAttempt, CollectingAddress_for_AuthorisedCall, Analysing_CollectedAddress, Progressing_AnalysedAddress, Alerting, Active_CallAnswered, Releasing and Faulty. This proposal follows the pattern <function_entry>.

Topic 16
Discussion
Handling of issues list comments on the proposal of Ericsson/Alcatel in N5-010Contr5STDCallLeg document and related sequence diagrams.
Agreement
It was agreed that comments 10 to 25 of the Telcordia shall be further progressed via e-mail. Also comments from other organisations shall be further advanced. It is the aim to freeze at the next May 2001 San Diego meeting the multiparty call control and to allow only technical flaws or details to be considered at the subsequent July Sophia Antipolis meeting. Comments should be formulated not later than Monday 14 May 17hr European time.

Topic 17
Discussion
The functions to be performed by the Collect_Address state needs to be clarified with regard to Directory Number overlap sending and receiving related to the getMoreDialleddigitsReq() method. It has to be decided whether the cut and paste mechanism with regard to the destination (target) address need to be performed by the under-laying network or by the API implementation (gateway). Also the user interaction service functionality for digit collected needs to be specified.
Proposal
An initial proposal to stimulate further e-mail discussion is as follows:
(i) the cut and paste mechanism is performed by the under-laying network
(ii) the user interaction service will support the collection of dialled calling party information related to e.g. password.while the getMoreDialledDigitsReq() method will collect the additional dialled digits related to access codes within a customised dialling plan, feature codes, carrier access/identification code and collected called party address information as per numbering plan.

Topic 18
Discussion
The need for defining the setTargetAddress() in the progressing state must be illustrated by means of appropriate sequence diagrams.
Clarification
It was clarified that in the progressing state the routing information is interpreted , the authority of the calling party to establish this connection is verified and that the under-laying network is established. It was agreed that the API gateway implementation shall however never create implicitly a callLeg object.

Topic 19
Discussion
The exact entry states for the callLeg’s instantiated during the reportNotification() method need to be clarified by means of a table and additional SDT state transitions need to be indicated (especially with relation to the release triggers). For example, based on the call forwarding sequence diagram the callLeg modelling for the A-party is entered in the Progressing state while the callLeg modelling for the B-Party is entered into the released state.

Topic 20
Discussion
The support of dynamic triggering in the context of a call with regard to the createNotification() method needs to be agreed for version 1.
Proposal
It is proposed that the dynamic triggering in the context of a call shall not be supported in Version 1.

2 State Transition Diagram for IpCallLeg

In the state transition diagrams the call leg object reflects the state of the call/connection as seen from the party to which this object is related to.

7.4.3.1 Idle State

Entry events:

-
Receipt of a createCallLeg() and createAndRouteCallLeg() method to start an application initiated call leg connection.

Functions:

-
In this state the interface connection is idled and the application activity timer is being provided.

Exit events:

-
Receipt of a routeReq() method from the application.

-
Application activity timer expiry indicating that no requests from the application have been received during a certain period.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

7.4.3.2 Authorising_CallAttempt

Entry events:

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an Call_Attempt trigger criterion.

Functions:

-
The detection of a Call_Attempt trigger criterion suspends call leg processing.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

-
In this state the network checks the authority/ability based on the originating party’s identity and service profile.

Exit events:

-
Detection of an “Call_Attempt_Authorised” indication as a result that the authorisation is successful.

-
Application activity timer expiry indicating that no requests from the application have been received during a certain period.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
Detection of a “release” indication as a result of a premature disconnect from the calling party.

7.4.3.3 CollectingAddress_for_AuthorisedCall State (Only valid for incoming call legs)

Entry events:

· Receipt of a getMoreDialledDigitsReq() method in order to collect a variable number of digits.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an Call_Attempt_Authorised trigger criterion.

Note :
Trigger criteria need further definition because they are too restricted, presently only criteria are defined for the TpAddressRange. In INAP also criteria are defined for e.g. class of service, bearer capability, nature of address etc.

Functions:

-
The detection of a Attempt_Authorised trigger criterion suspends call leg processing.

-
On receipt of the “Call_Attempt_Authorised” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

-
In this state the dialled address string from the calling party is being collected and is examined in accordance to the dialling plan in order to determine end of collection.

Exit events:

-
Detection of an “Address_Collected” indication as a result of the availability of the complete initial information package/dialling string from the calling party.

-
Detection of an “release” indication as a result of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

7.4.3.4 Analysing_CollectedAddress State (only valid for incoming call legs)

Entry events:

-
Receipt of an “Address_Collected” indication as a result of the availability of the complete initial information package/dialling string from the calling party.

-
Receipt of a routeReq() method.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an Address_Collected trigger criterion.

Functions:

-
The detection of a Address_Collected trigger criterion suspends call leg processing.

-
On receipt of the “Address_Collected” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() or a routeReq() method.

-
In this state the received information is being analysed and/or translated according to the dialling plan to determine the routing address of the call leg connection and connection type (local, transit, gateway).

Exit events:

-
Detection of an “Address_Analysed” indication as a result of the availability of the routing address and nature of address.

-
Detection of a “release” indication as a result of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

7.4.3.5 Progressing_AnalysedAddress State

Entry events:

-
Receipt of an “Address_Analysed” indication as a result of the availability of the routing address and nature of address.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an Address_Analysed trigger criterion.

Functions:

-
The detection of a Address_Analysed trigger criterion suspends call leg processing.

-
On receipt of the “Address_Analysed” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed.
-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

-
In this state the routing information is interpreted, the authority of the calling party to establish this connection is verified and the under laying network connection is established.

Exit events:

-
Detection of a “release” indication as a result of the following events:

i)
Unable to select a route or indication from the remote party of the call leg connection cannot be presented (this is the network determined busy condition)

ii)
Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g. business group restriction mismatch).

iii)
Detection of a route busy condition received from the remote call leg connection portion.

iv)
Detection of a no-answer condition received from the remote call leg connection portion.

v)
Detection that the remote party was not reachable.

vi)
Detection of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
Detection of an “Alerting” indication as a result of the remote party being alerted.

-
Detection of an “Answer” indication as a result of the remote party being connected (answered).

7.4.3.6 Alerting State

Entry events:

-
Detection of an “Alerting” indication as a result of the remote party being alerted.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Alerting” trigger criterion.

Functions:

-
The detection of a “Alerting” trigger criterion suspends call leg processing.

-
On receipt of the “Alerting” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ALERTING then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ALERTING then no monitoring is performed.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

-
In this state the network has indicated that the remote party is alerted.

Exit events:

-
Detection of a “release” indication as a result of the following events:

i)
Unable to select a route or indication from the remote party of the call leg connection cannot be presented (this is the network determined busy condition)

ii)
Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g. business group restriction mismatch).

iii)
Detection of a route busy condition received from the remote call leg connection portion.

iv)
Detection of a no-answer condition received from the remote call leg connection portion.

v)
Detection that the remote party was not reachable.

vi)
Detection of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
Detection of an “Answer” indication as a result of the remote party being connected (answered).

7.4.3.7 Active_CallPartyAnswered State

Entry events:

-
Detection of an “Answer” indication as a result of the remote party being connected (answered).

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Answer” trigger criterion.

Functions:

-
The detection of a “Answer” trigger criterion suspends call leg processing.

-
On receipt of the “Answer” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ANSWER then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ANSWER then no monitoring is performed.

-
On receipt of the “service code” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then this is not a valid event (that event is not notified) and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then no monitoring is performed.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

-
In this state a connection to the call party is established.

Exit events:

-
Detection of an “release” indication as a result of a disconnect from the calling or called party.

-
Receipt of a deassign() method.

-
Receipt of a release() method from the application.

7.4.3.8 Releasing State

Entry events:

-
Detection of an “Release” indication as a result of the network release initiated by one of the parties of the call leg connection.

-
Sending of the release() method by the application.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Release” trigger criterion.

-

Functions:

-
In this state the connection to the call party has been released by the network . In this state the API Gateway collects the possible call leg information requested with getInfoReq() and/ or superviseReq(). When the information is ready it will be sent to the application and additionally the application will also be informed that the connected has ended, by sending the callLegEnded() method. In case that the application has not requested additional call leg related information a transition to the Idle state is made immediately and additionally the application will also be informed that the connection has ended.
-
The detection of a “Release” trigger criterion suspends call leg processing.

-
On receipt of the “Release” indication the following functions are performed:

-
The release event handling is performed as follows:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_RELEASE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_RELEASE then no monitoring is performed.

-
The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to the application with respectively the getInfoRes() and/or superviseRes() methods.

-
The callLegEnded() method is sent to the application.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
After the API Gateway has collected the possible call leg information requested with getInfoReq() and/ or superviseReq() and having informed the application, it will end the call leg connection, by sending the callLegEnded() method.

-
In case that the application has not requested additional call leg related information a transition to the Idle state is made immediately and additionally the application will also be informed that the connection has ended, by sending the callLegEnded() method.

7.4.3.9 Faulty State

Entry events:

-
A transition to this state is made when the Call leg object is in state Idle and no requests from the application have been received during a certain period.

Functions:

-
In case the application requested for call leg related information previously, the application will be informed that this information is not available and additionally the application is informed that the call leg object is destroyed.

-
In case the application has not requested additional call related information the call object is destroyed immediately and additionally the application will be informed of this event.
Exit events:

-
Detection of the sending of the last call leg information to the application (the Call Leg object will be destroyed).

[image: image1.emf]Idle

CollectingAddress_for_Author

isedCall

Analysing_CollectedAddress

event "Address_Collected"["armed"]/ ^IpAppCallLeg.eventR...

Progressing_AnalysedAddress

event "Address_Analysed"["armed"]/ ^IpAppCallLeg.even...

event "Address_Analysed"["state entered via "Address_Ana...

Alerting

event "Alerting"["armed"]/ ^IpAppCallLeg.event...

Releasing

event "Release"(CallReleaseCause)["Armed"]/ ^IpAppCallLeg.eventReportRes(P_CALL...

event "release"(invalid address)/ ^IpAppCallLeg.eventReportErr

event "Release"["InfoReq"]/ ^IpAppCallLeg.getInfoRes

event "Release"["SuperviseReq"]/ ^IpAppCallLeg.superviseRes

event "last report"/ ^IpMultiPartyCall."leg released"

Active_CallPartyAnswered

event "Answer"["armed"]/ ^IpAppCallLeg.eventReportRes("P_CALL_EVENT_ANSWER")

All_States

Faulty

event "last error report"/ ^IpMultiPartyCall."leg rel...

All States except Released, Faulty

All States except Idle, Faulty

Proposed Combined Call Leg

STD

Authorising_CallAttempt

All States

Except Faulty

getMoreDialledDigitsReq

"Address_Collected"

getMoreDialledDigitsReq

routeReq

"Progress"

"Address_Analysed"

"Alerting"

getMedia

setMedia

"Answer"

"Answer"

getLastRedirectedAddress

getCall

"timer expires"

superviseReq

setAdviceOfCharge

setChargePlan

getInfoReq

eventReportReq

continueProcessing

"Release"

deassign ^IpMultiPartyCall."leg released"

"last error report" ^callLegEnded

"last report"("release indication") ^callLegEnded

"call_attempt_authorised"

Release()

reportNotification("Alerting")

reportNotification(

"Address_Collected')

reportNotification("Release")

reportNotification("Answer")

reportNotifiaction("call attempt")

reportNotification("Address_Analysed")

reportNotification(

"call_Attempt_Authorised")

reportNotification("Release")

[image: image2.emf]Idle

Analysing_CollectedAddress

event "Address_Collected"["armed"]/ ^IpAppCallLeg.even...

Progressing_AnalysedAddress

event "Address_Analysed"["armed"]/ ^IpAppCallLeg.eve...

event "Address_Analysed"["state entered via "Address...

Alerting

event "Alerting"["armed"]/ ^IpAppCallLeg.even...

Releasing

event "Release"(CallReleaseCause)["Armed"]/ ^IpAppCallLeg.eventReportRes(P_CAL...

event "release"(invalid address)/ ^IpAppCallLeg.eventReportErr

event "Release"["InfoReq"]/ ^IpAppCallLeg.getInfoRes

event "Release"["SuperviseReq"]/ ^IpAppCallLeg.superviseRes

event "last report"/ ^IpMultiPartyCall."leg released"

Active_CallPartyAnswered

event "Answer"["armed"]/ ^IpAppCallLeg.eventReportRes("P_CALL_EVENT_ANSW...

All_States

Faulty

event "last error report"/ ^IpMultiPartyCall."leg rel...

All States except Released, Faulty

All States except Idle, Faulty

Proposed Outgoing Call Leg STD

Authorising_CallAttempt

All States

Except Faulty

routeReq

"Progress"

"Address_Analysed"

"Alerting"

getMedia

setMedia

"Answer"

"Answer"

getLastRedirectedAddress

getCall

"timer expires"

superviseReq

setAdviceOfCharge

setChargePlan

getInfoReq

eventReportReq

continueProcessing

"Release"

deassign ^IpMultiPartyCall."leg released"

"last error report" ^callLegEnded

"last report"("release indication") ^callLegEnded

Release()

reportNotification("Alerting")

reportNotification("Answer")

reportNotifiaction("call attempt")

reportNotification("Address_Analysed")

reportNotification(

"Address_Collected')

reportNotification("Release")

reportNotification("Release")

"call_attempt_authorised"

[image: image3.emf]CollectingAddress_for_Author

isedCall

Analysing_CollectedAddress

event "Address_Collected"["armed"]/ ^IpAppCallLeg.even...

Progressing_AnalysedAddress

event "Address_Analysed"["armed"]/ ^IpAppCallLeg.eve...

event "Address_Analysed"["state entered via "Address...

Alerting

event "Alerting"["armed"]/ ^IpAppCallLeg.even...

Releasing

event "Release"(CallReleaseCause)["Armed"]/ ^IpAppCallLeg.eventReportRes(P_CAL...

event "release"(invalid address)/ ^IpAppCallLeg.eventReportErr

event "Release"["InfoReq"]/ ^IpAppCallLeg.getInfoRes

event "Release"["SuperviseReq"]/ ^IpAppCallLeg.superviseRes

event "last report"/ ^IpMultiPartyCall."leg released"

Active_CallPartyAnswered

event "Answer"["armed"]/ ^IpAppCallLeg.eventReportRes("P_CALL_EVENT_ANSW...

All_States

Faulty

event "last error report"/ ^IpMultiPartyCall."leg rel...

All States except Released, Faulty

All States except Idle, Faulty

Proposed Incoming Call Leg STD

Authorising_CallAttempt

All States

Except Faulty

getMoreDialledDigitsReq

"Address_Collected"

getMoreDialledDigitsReq

"Progress"

"Address_Analysed"

"Alerting"

getMedia

setMedia

"Answer"

"Answer"

getLastRedirectedAddress

getCall

"timer expires"

superviseReq

setAdviceOfCharge

setChargePlan

getInfoReq

eventReportReq

continueProcessing

"Release"

deassign ^IpMultiPartyCall."leg released"

"last error report" ^callLegEnded

"last report"("release indication") ^callLegEnded

"call_attempt_authorised"

Release()

reportNotification("Alerting")

reportNotification("Answer")

reportNotifiaction("call attempt")

reportNotification(

"call_Attempt_Authorised")

reportNotification("Address_Analysed")

reportNotification(

"Address_Collected')

reportNotification("Release")

reportNotification("Release")

* Contact:
Dirk De Gelder

Frans Haerens

Ard_Jan Moerdijk
(+32-3-240.42.12 / * dirk.de_gelder@alcatel.be
(+32-3-240.90.34 / * frans.haerens@alcatel.be
(+31-161242777 / * ard.jan.moerdijk@eln.ericsson.se

D:\API\ParlaySanDiego\AlcatelContributions\contr5STDCallLeg.doc

