3GPP TSG_CN WG5#8

Tdoc N5-000333

Phoenix (Arizona), USA

18th – 20th December, 2000

Source:
Alcatel
, Ericsson

Title:
Example of Registration and Discovery

Agenda item:
5.2
Document for:
Information

1. Introduction

This document describes the process of registration and discovery of OSA services, and the use of service type descriptions in that process.

For the sake of simplicity, it is not intended to be a realistic use case, since this would require more complex service descriptions, risking diverting attention from the goal of this document.

2. High Level Example Description

In this example a Network Operator has just installed a certain Multi-Party Call Control service that is a specialization of the Multi-Party Call Control SCF - that is, it is a Multi-Party Call Control SCF with certain extra properties. In order to make this service available to Applications, it is first registered in the Framework provided by that network. Assigning values to property types makes it possible to the Network Operator to register more than one “version“ of the SCF. This example is concerned with the registration (and further discovery) of one of them.

Some time later a certain Application contacts the network, via its Framework, in order to discover the services provided by that Network Operator. Note that among all those SCFs provided by the network, this specific Application will be allowed to discover only those that it will be allowed to use. The Application in the example is interested in a certain specialization of a Multi-Party Call Control service. In the first discovery steps the Application will find out that the specialization it wants is compatible with what it is offered by that network, and so it will finish the discovery process with the last step, by means of which it will get an interface reference that will allow it to use the desired service.

3. Assumptions

For the sake of simplicity, and in order to focus on the goal of this contribution, the following initial conditions are asumed for the example:

1. The network operator has just installed a new Multi-Party Call Control service, which therefore is not yet known to the network’s Framework.

2. Before the installation of the new service, the network operator did not offer a Multi-Party Call Control service, but just Generic Call Control.

3. The version of Multi-Party Call Control newly installed in the network has the following properties:

· It supports a maximum of 5 call legs per call

· It supports dynamic events of types P_CALL_REPORT_PROGRESS, P_CALL_REPORT_BUSY and P_CALL_REPORT_NO_ANSWER

· It supports the address plans P_ADDRESS_PLAN_IP and P_ADDRESS_PLAN_E164

· The values of the rest of the properties are not relevant for this example.

4. The Application has already used the services of this network via its OSA interfaces in the past.

5. The Application has subscribed to the network services either off-line, or some time in the past: in any case this example assumes that no subscription restrictions are found in the process described. This is covered in the so-called Service Level Agreement.

6. The Application is interested in a Multi-Party Call Control service of the following characteristics:

· Supporting up to 4 call legs per call

· Supporting dynamic events of types P_CALL_REPORT_PROGRESS, P_CALL_REPORT_BUSY and P_CALL_REPORT_NO_ANSWER

· Supporting the address plan P_ADDRESS_PLAN_IP

· With values for the rest of the properties that are irrelevant for this example

7. The value of all property types for this SCF must be provided at service registration time – that is, all property modes are “mandatory“.

4. Sequence For Registration

A network operator that provides the OSA API has just installed a new service. This service is not only yet unknown to the applications: it is also unknown the network’s Framework, and so it cannot be made available to applications that use the network’s OSA API.

The way to make it available is registration in the Framework. Registration is a two-step process:

Registration: first step – register service

The purpose of this first step in the process of registration just aims to agree, within the network, on a name to call, internally, a newly installed SCF version.

That is, in this case, the goal is to make an association between the Multi-Party Call Control SCF type, as characterized by the specific properties listed above, and an identifier called serviceID:

Multi-Party Call Control SCF

+ supporting a maximum of 5 call legs per call

+ supporting dynamic events of types P_CALL_REPORT_PROGRESS, P_CALL_REPORT_BUSY and P_CALL_REPORT_NO_ANSWER
<--> serviceID

+ supporting address plans P_ADDRESS_PLAN_IP and P_ADDRESS_PLAN_E164

This service ID will be the name used in that network (that is, between that network’s Framework and its SCSs), whenever it is necessary to refer to this version of Multi-Party Call Control SCF (for example for announcing its availability, or for withdrawing it later).

Registration: second step – announce service availability

At this point the network’s Framework is aware of the existence of a new SCF, and could let applications know – but they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available. In CORBA an “entry point“, called service factory, is used. The role of the service factory is to control the life cycle of a CORBA interface, or set of interfaces, and provide clients with the references that are necessary to invoke the methods offered by these interfaces. Some times service factories instantiate new interfaces for different clients, sometime they give the same interface reference to more than one client. But the starting point for a client to use an SCF is to obtain an interface reference to a factory of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF version, will instantiate a factory for it that will allow client to use it. Then it will inform the Framework of the value of the interface associated to the new SCF. After the receipt of this information, the Framework makes the new SCF (identified by the pair [serviceID, serviceFactoryRef]) discoverable.
4.1 A closer view at the registration parameters

registerService()

· in serviceTypeName
This is a string with the name of the SCF. In the case of this example, the value of serviceTypeName is “P_MPCC“.

· in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a triplet (ServicePropertyName, ServicePropertyValueList, ServicePropertyMode).

· ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the SCF data definition).

· ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string that describes a valid value of a SCF property (valid SCF property values are given in the SCF data definition).

· ServicePropertyMode is the value of the property modes; as said in the assumptions, all properties here are “mandatory“.

All this considered, we conclude that or the case of the example, the value of servicePropertyList is the following list of triplets:

(Max_CallLegs_perCall,
5,
MANDATORY)

(App_init_supported,
non relevant for the example,
MANDATORY)

(Charging_support,
non relevant for the example,
MANDATORY)

(Trig_event_types_supported,
non relevant for the example,
MANDATORY)

(Dyn_event_types_supported,
(P_CALL_REPORT_PROGRESS, P_CALL_REPORT_BUSY, P_CALL_REPORT_NO_ANSWER),

MANDATORY)

(AddressPlan_supported,
(P_ADDRESS_PLAN_IP, P_ADDRESS_PLAN_E164),

MANDATORY)

(Load_control_supported,
non relevant for the example,
MANDATORY)

(Uitype_supported,
non relevant for the example,

MANDATORY)

(Additional_Uicaps,
non relevant for the example,

MANDATORY)

(Callleg_level_routing_support,
non relevant for the example,

MANDATORY)

(Media_attach_mechanism,

non relevant for the example,

MANDATORY)

(Media_detach_support,

non relevant for the example,
MANDATORY)

(Release_type,

non relevant for the example,

MANDATORY)

(Last_redirected_nr_support,
non relevant for the example,
MANDATORY)

· out serviceID

This is a string, automatically generated by the Framework of this network, based on the following:

· a string that contains a unique number, generated by the Framework; let us imagine the number “25“ is generated this time;

· a string that identifies the SCF name: in this case it is “P_MPCC“;

· a concatenation of strings that identify the SCF specialization; there is none in this case
.

Therefore the value of the parameter serviceID in this case is “25P_MPCC“. This is the name by which the version of MPCC, described by the properties above, is going to be identified internally in this network.

announceServiceAvailability()

· in serviceID
This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to include the serviceID, to know which SCF it is.

· in serviceFactoryRef
This is the interface reference at which the service factory of the new SCF is available. Note that the Framework will have to invoke the method getServiceManager() in this interface, any time between now and when it accepts the first application requests for discovery, so that it can get the service manager interface necessary for applications as an entry point to any SCF.

5. Sequence For Discovery

Let us imagine an Application that has previously used the OSA API provided by this network
, and therefore has already used this network‘s SCFs. But applications know that the network operator may upgrade them any time, so that information obtained in previous discovery processes may be outdated. This is why it decides to use the network’s Discovery interfaces again, and see if there is something new.

Discovery is a three-step process:

Discovery: first step – list service types

In this first step the application asks the Framework what service types that are available from this network. Service types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what SCFs are supported by the network.

Discovery: second step – describe service type

In this second step the application requests what are the properties that describe a certain service type that it

is interested in –in this case Multi-Party Call Control.

Discovery: third step – discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i. e., assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the serviceID that is the identifier this network operator has assigned to the SCF version described in terms of service properties. This is the moment where the serviceID identifier is shared with the application that is interested on the corresponding service.

This is done for either one service or more (the application specifies the maximum number of responses it wishes to accept).

5.1 A closer view at the discovery parameters

listServiceTypes()

· out listTypes

This is a list of service type names, i.e., a list of strings, each of them the name of a SCF or a SCF specialization. In this example the list will include, among others, the string “P_MPCC“.

describeServiceType()

· in name

This is a service type name: a string that contains the name of the SCF whose description the Application is interested in. In this example, the value of this parameter is “P_MPCC“.

· out serviceTypeDescription

The description of the specified SCF type. The description provides information about:

· the property names associated with the SCF,

· the corresponding property value types,

· the corresponding property mode (mandatory or read only) associated with each SCF property,

· the names of the super types of this type, and

· whether the type is currently enabled or disabled.
In our example the value of this parameter will be similar to the list in section 4.1.

discoverService()

· in serviceTypeName

This is a string that contains the name of the SCF whose description the Application is interested in. In this example, the value of this parameter is “P_MPCC“.
· in desiredPropertyList

This is aagain a similar list to the one in section 4.1, but where the value of the service properties have been fine tuned by the Application to (they will be logically interpreted as "minimum", "maximum", etc. by the Framework). Let us remember from section 3 that what the Application in this example wants is a MPCC

· supporting up to 4 call legs per call

· supporting dynamic events of types P_CALL_REPORT_PROGRESS, P_CALL_REPORT_BUSY and P_CALL_REPORT_NO_ANSWER

· supporting the address plan P_ADDRESS_PLAN_IP

· with values for the rest of the properties that are irrelevant for this example

So the value of this parameter is the following list of triplets:

(Max_CallLegs_perCall,
4,
MANDATORY)

(App_init_supported,
non relevant for the example,
MANDATORY)

(Charging_support,
non relevant for the example,
MANDATORY)

(Trig_event_types_supported,
non relevant for the example,
MANDATORY)

(Dyn_event_types_supported,
(P_CALL_REPORT_PROGRESS, P_CALL_REPORT_BUSY, P_CALL_REPORT_NO_ANSWER),

MANDATORY)

(AddressPlan_supported,
(P_ADDRESS_PLAN_IP),

MANDATORY)

(Load_control_supported,
non relevant for the example,
MANDATORY)

(Uitype_supported,
non relevant for the example,

MANDATORY)

(Additional_Uicaps,
non relevant for the example,

MANDATORY)

(Callleg_level_routing_support,
non relevant for the example,

MANDATORY)

(Media_attach_mechanism,

non relevant for the example,

MANDATORY)

(Media_detach_support,

non relevant for the example,
MANDATORY)

(Release_type,

non relevant for the example,

MANDATORY)

(Last_redirected_nr_support,
non relevant for the example,
MANDATORY)

· in max

This parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result. Let us assume the simplest case: the value for this parameter is 1.
· out serviceList

This is a list of duplets: (serviceID, servicePropertyList). It provides a list of SCFs matching the requirements from the Application, and about each: the identifier that has been assigned to it in this network (serviceID), and once again the service property list in section 4.1.

Thus the value of this parameter in the example is a single duplet: (“25P_MPCC“, list in section 4.1).

6. ID Track So Far

· Standardized SCFs have a well known SCF name

· Both standardized and not standardized SCFs are given a serviceTypeName by the vendor that develops them. This serviceTypeName is shared with the network operator’s Framework during registration, and is a way to call an SCF. During registration, several “versions“ of the same SCF, with the same serviceTypeName, are described in terms of service properties.

· During registration, the Framework assigns a serviceID for each “version“ of SCF, as described in terms of service properties. After the process of registration this serviceID is known to all the OSA components of the network.

· After the three-step discovery process, an Application is given this identifier together with the corresponding decription, in terms of service properties, for all the services it is interested in.

Therefore, at the end of the registration and discovery processes, the network operator and the Application share the following information, about all services the Application is interested in: versions of services provided by the network, and a common way to call them (serviceID).

7. Sequence For Service Selection

After discovery the Application gets a list of one or more SCF versions (one in this example) that match its required description. It now needs to decide which service it is going to use (in the example it will be the only one that is available); it also needs to actually get a way to use it.

This is achieved in the following two steps:

Service Selection: first step – selectService

In this first step the Application identifies the SCF version it has finally decided to use (in this example it will be the only one available). This is done by means of the serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to the Application a new identifier for the service chosen: a service token, that is a private identifier for this service between this Application and this network, and is used for the process of signing the service agreement.

Service Selection: second step – signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this contractual details have been agreed, then the Application can be given the means to actually use it. The means are a reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By calling the getServiceManager operation on the service factory the FW retrieves this interface and returns it to the application. The service properties applicable for this application are also fed to the SCF (via the service factory interface) in order for the SCS to instantiate an SCF version that is applicable for this application.

7.1 A closer view at the service selection parameters

selectService()

· in serviceID

This identifies the SCF required.

· out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It contains operator specific information relating to the service level agreement.

signServiceAgreement()

· in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

· in agreementText

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

· in signingAlgorithm

This is the algorithm used to compute the digital signature.

· out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a reference to the manager interface of the SCF. Focusing on what is the aims of the example, the serviceMgrInterface is a reference to the manager interface for the selected SCF. Remember the end of section 4: the Framework has off-line found this interface reference.

8. Final ID Track

· At the end of the registration and discovery mechanism, the Application and the network share a serviceID that identifies a version of SCF, described in terms of service properties. Now the Application decides to use that service.

· There is a need for an “agreement related“ identifier, valid only for that certain Application and network, that is valid for the life span of their service agreement: this is the service token.

· Now SCFs are used by means of CORBA interface references. Focusing on one of them – the service manager, which is the entry point for each SCF – a service factory, which is the life-cycle manager of the CORBA object that represents the service manager, is in charge of deciding on the load of each CORBA reference. All service manager interfaces references provided by the same service factory (i.e., associated to the same serviceID) will be the entry to the same SCF version; but the actual CORBA interface reference may be different, for purely CORBA considerations (like location or load balancing, for example). This is the reason for the last identifier in the chain: the service manager interface reference.

9. Summary Of Open Issues

This section summarizes the issues that work on the example has found to need further study.

· Names must be given to properties.

· For standardised SCFs it is necessary to give names to service types, characterized by a certain description in terms of properties, as well as a table that maps the service type names with the corresponding properties.

� Contact: Chelo.Abarca@ms.alcatel.fr

� Contact: Ard.Jan.Moerdijk@eln.ericsson.se

� Note that while MPCC is a specialization of the GCC, we have decided that it is identified as a SCF, and not a specialization of one.

� This is again for the sake of simplicity: the example will center on the discovery of the newly installed SCF.

