

N5-0001XX

DRAFT

3GPP Meeting CN5 #4
Document
N5-000132

Retz, 10-11 July 2000

e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

29.198
CR
005
Current Version:
3.0.0

GSM (AA.BB) or 3G (AA.BBB) specification number (

(CR number as allocated by MCC support team

For submission to:
CN#09
for approval
x

strategic

(for SMG

list expected approval meeting # here (
for information

non-strategic

use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM

ME

UTRAN / Radio

Core Network
X

(at least one should be marked with an X)

Source:
Ericsson
Date:
 27 July 2000

Subject:
Common IDL interfaces for Generic Call Control and Generic User Interaction between 3GPP, ETSI SPAN3 and Parlay

Work item:
OSA

Category:
F
Correction
X
Release:
Phase 2

A
Corresponds to a correction in an earlier release

Release 96

(only one category
B
Addition of feature

Release 97

shall be marked
C
Functional modification of feature

Release 98

with an X)
D
Editorial modification

Release 99
X

Release 00

Reason for
change:

The Generic Call Control SCF is one of the capability features of 3GPP OSA R99. Because of a great drive for harmonisation between 3GPP, SPAN3 and Parlay, the Generic Call Control API is in principle common between the three. However, at this moment the IDL for Generic Call Control in TS 29.198 is specific to 3GPP release 99, because e.g. the operation for createCall() has been removed as there is no support for service initiated calls in release 99.

When the IDL is different from IDL specified by Parlay or ETSI-SPAN3, this will lead in fact to different APIs for the developer community.

In order to ensure common API’s for fixed and wireless access, the OSA API work is done jointly between ETSI SPAN3 and 3GPP CN5. It has been agreed that the joint N5/SPAN3 specification should contain one common IDL. Since the Generic Call Control of R99 is also applicable for fixed access, the common IDL for Generic Call Control and User Interaction should be the complete IDL, including the operations:

· createCall() and setCallLoadControl() on the IpCallControlManager

· callOverloadEncountered() and callOverloadCeased() on the IpAppCallControlManager,

· getMoreDialledDigitsReq() on the IpCall,

· getMoreDialledDigitsRes() and getMoreDialledDigitsErr() on the IpAppCall,

· recordMessageReq() on the IpUICall,

· recordMessageRes() and recordMessageErr() on the IpAppUICall.

This CR proposes that in the TS 29.198 the complete Generic Call Control IDL is included as well with the addition of a remark that operations that are not supported will throw the exception for method not supported (P_METHOD_NOT_SUPPORTED in TpResultInfo).

Clauses affected:
9

Other specs
Other 3G core specifications

(List of CRs:

affected:
Other GSM core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:

[image: image1.wmf]help.doc

 <--------- double-click here for help and instructions on how to create a CR.

9. IDL Interface Definitions

The OSA API definitions have been divided into several CORBA modules. The common data definitions are placed in the root module while each of the specific service capability feature API definitions are being assigned their own module directly under that root. Each specific SCF functions, like User Status, have their data and interface definitions collocated. This structure has the advantage that explicit scoping is kept to a minimum.

The IDLs defined for the specific SCFs assumes that the OSA common definitions (interfaces and data) are provided in the org.threegpp.osa module within a file name called OSA.idl

Module Name
Description
IDL file name

org.threegpp.osa
Common data/interface definitions
OSA.idl

org.threegpp.osa.mm
Common mobility data definitions (root)
MM.idl

org.threegpp.osa.mm.ul
Network User Location (UL)
MMul.idl

org.threegpp.osa.mm.us
User Status (US)
MMus.idl

org.threegpp.osa.cc
Call Control
CC.idl

org.threegpp.osa.ui
User Interaction
UI.idl

org.threegpp.osa.termcap
Terminal Capabilities
TERMCAP.idl

Some of the interfaces contain more operations than defined in the interface classes of Chapter 6. These operations must return a “Method not supported” exception in case the interface is implemented on a SCS based on this specification.
Below impact on the Call Control and User interaction is shown:

9.3 Call Control

9.3.1
Common Data Types for Call Control

// source file: CC.idl

// Generic Call Data description

#ifndef __OSA_CC_DEFINED

#define __OSA_CC_DEFINED

#include <OSA.idl>
#include <UI.idl>
module org

{

module threegpp

{

module osa

{

module cc

{

/* Defines the mechanism that will be used to alert a called party. */

typedef TpInt32 TpCallAlertingMechanism;

/* Defines the bearer service associated with the call. */

enum TpCallBearerService

{

P_CALL_BEARER_SERVICE_UNKNOWN,

 /* Bearer capability information

 unknown at this time*/

P_CALL_BEARER_SERVICE_SPEECH,

 /* Speech*/

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED, /* Unrestricted digital information*/

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED,
 /* Restricted digital information*/

P_CALL_BEARER_SERVICE_AUDIO,

 /* 3.1 kHz audio*/

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTEDTONES, /* Unrestricted digital information

 with tones/announcements*/

P_CALL_BEARER_SERVICE_VIDEO

 /*Video*/

};

/*This data defines the bearer capabilities associated with the call. (3G TS 24.002) This

 information is network operator specific and may not always be available because there

 is no standard protocol to retrieve the information */

enum TpCallNetworkAccessType

{

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN,

/* Network type information unknown at this time */

P_CALL_NETWORK_ACCESS_TYPE_POT,

/* POTS */

P_CALL_NETWORK_ACCESS_TYPE_ISDN,

/* ISDN */

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET,
/* Dial-up Internet */

P_CALL_NETWORK_ACCESS_TYPE_XDSL,

/* xDSL */

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS

/* Wireless */

};

/* Defines the category of a calling or called party (e.g. call priority, payphone,

 prepaid).*/

enum TpCallPartyCategory

{

P_CALL_PARTY_CATEGORY_UNKNOWN,

/*calling party's category unknown at this time*/

P_CALL_PARTY_CATEGORY_OPERATOR_F,
/* operator, language French*/

P_CALL_PARTY_CATEGORY_OPERATOR_E,
/* operator, language English*/

P_CALL_PARTY_CATEGORY_OPERATOR_G,
/* operator, language German*/

P_CALL_PARTY_CATEGORY_OPERATOR_R,
/* operator, language Russian*/

P_CALL_PARTY_CATEGORY_OPERATOR_S,
/* operator, language Spanish*/

P_CALL_PARTY_CATEGORY_ORDINARY_SUB,
/* ordinary calling subscriber*/

P_CALL_PARTY_CATEGORY_PRIORITY_SUB,
/* calling subscriber with priority*/

P_CALL_PARTY_CATEGORY_DATA_CALL,
/* data call (voice band data) */

P_CALL_PARTY_CATEGORY_TEST_CALL,
/* test call*/

P_CALL_PARTY_CATEGORY_PAYPHONE

/* payphone*/

};

/* This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High Layer Compatitibility Information, and 3G TS 22.003)Defines the tele-service associated with the call (e.g. speech, video, fax, file transfer, browsing). */

enum TpCallTeleService

{

P_CALL_TELE_SERVICE_UNKNOWN,
/* Teleservice information unknown at this time*/

P_CALL_TELE_SERVICE_TELEPHONY,

/* Telephony */

P_CALL_TELE_SERVICE_FAX_2_3,

/* Facsimile Group 2/3 */

P_CALL_TELE_SERVICE_FAX_4_I,

/* Facsimile Group 4, Class I */

P_CALL_TELE_SERVICE_FAX_4_II_III,
/* Facsimile Group 4, Classes II and III */

P_CALL_TELE_SERVICE_VIDEOTEX_SYN,
/* Syntax based Videotex */

P_CALL_TELE_SERVICE_VIDEOTEX_INT,
/* International Videotex interworking via gateways or interworking units */

P_CALL_TELE_SERVICE_TELEX,

/* Telex service*/

P_CALL_TELE_SERVICE_MHS,

/* Message Handling Systems */

P_CALL_TELE_SERVICE_OSI,

/* OSI application*/

P_CALL_TELE_SERVICE_FTAM,

/* FTAM application*/

P_CALL_TELE_SERVICE_VIDEO,

/* Videotelephony*/

P_CALL_TELE_SERVICE_VIDEO_CONF,
/* Videoconferencing*/

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF,
/* Audiographic conferencing*/

P_CALL_TELE_SERVICE_MULTIMEDIA,
/* Multimedia services*/

P_CALL_TELE_SERVICE_CS_INI_H221,
/* Capability set of initial channel of H.221*/

P_CALL_TELE_SERVICE_CS_SUB_H221,
/* Capability set of subsequent channel of H.221*/

P_CALL_TELE_SERVICE_CS_INI_CALL,
/* Capability set of initial channel associated with an active 3.1 kHz audio or speech call.*/

P_CALL_TELE_SERVICE_DATATRAFFIC,
/* Data traffic.*/

P_CALL_TELE_SERVICE_EMERGENCY_CALLS,
/* Emergency Calls*/

P_CALL_TELE_SERVICE_SMS_MT_PP,
/* Short message MT/PP*/

P_CALL_TELE_SERVICE_SMS_MO_PP,
/* Short message MO/PP*/

P_CALL_TELE_SERVICE_CELL_BROADCAST,
/* Cell Broadcast Service*/

P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3,
/* Alternate speech and facsimile group 3*/

P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3,
/* Automatic Facsimile group 3*/

P_CALL_TELE_SERVICE_VOICE_GROUP_CALL,
/* Voice Group Call Service*/

P_CALL_TELE_SERVICE_VOICE_BROADCAST
/* Voice Broadcast Service*/

};

/* Defines a specific call event report type. */

enum TpCallAppInfoType

{

P_CALL_APP_UNDEFINED, /* Undefined */

P_CALL_APP_ALERTING_MECHANISM, /* The alerting mechanism or pattern to use */

P_CALL_APP_NETWORK_ACCESS_TYPE, /* The network access type (e.g. ISDN) */

P_CALL_APP_TELE_SERVICE, /* Indicates the tele-service (e.g. speech) and related info such as clearing programme */

P_CALL_APP_BEARER_SERVICE, /* Indicates the bearer service (e.g. 64kb/s unrestricted data). */

P_CALL_APP_PARTY_CATEGORY, /* The category of the calling or called party */

P_CALL_APP_PRESENTATION_ADDRESS, /* The address to be presented to other call parties */

P_CALL_APP_GENERIC_INFO, /* Carries unspecified application-SCF information */

P_CALL_APP_ADDITIONAL_ADDRESS /* Indicates an additional address */

};

/* Defines the Tagged Choice of Data Elements that specify call application-related specific information. */

union TpCallAppInfo switch(TpCallAppInfoType)

{

case P_CALL_APP_TELE_SERVICE:

TpCallTeleService CallAppTeleService;

case P_CALL_APP_BEARER_SERVICE:

TpCallBearerService CallAppBearerService;

case P_CALL_APP_PARTY_CATEGORY:

TpCallPartyCategory CallAppPartyCategory;

case P_CALL_APP_PRESENTATION_ADDRESS:

TpAddress CallAppPresentationAddress;

case P_CALL_APP_GENERIC_INFO:

TpString CallAppGenericInfo;

case P_CALL_APP_ADDITIONAL_ADDRESS:

TpAddress CallAppAdditionalAddress;

case P_CALL_APP_ALERTING_MECHANISM:

TpCallAlertingMechanism CallAppAlertingMechanism;

case P_CALL_APP_NETWORK_ACCESS_TYPE:

TpCallNetworkAccessType CallAppNetworkAccessType;

};

typedef sequence <TpCallAppInfo> TpCallAppInfoSet;

enum TpCallChargeOrderCategory

{

P_CALL_CHARGE_PER_TIME, /* Charge per time*/

P_CALL_CHARGE_NETWORK /* Operator specific charge plan specification, e.g. charging table name / charging table entry*/

};

/* Defines the Tagged Choice of Data Elements that specify the charge plan for the call. */

union TpCallChargeOrder switch(TpCallChargeOrderCategory)

{

case P_CALL_CHARGE_PER_TIME:
TpChargePerTime ChargePerTime;

case P_CALL_CHARGE_NETWORK:
TpString NetworkCharge;

};

/* Defines the Sequence of Data Elements that specify the charge plan for the call This data type is identical to a TpString, and defines the call charge plan to be used for the call. The values of this data type are operator specific. */

struct TpCallChargePlan

{

TpCallChargeOrder ChargeOrderType;

TpString Currency;

TpString AdditionalInfo;

};

const TpInt32 P_EVENT_NAME_UNDEFINED = 0; // Undefined

const TpInt32 P_EVENT_GCCS_OFFHOOK_EVENT = 1; // Offhook event

const TpInt32 P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT = 2; // Address information collected

const TpInt32 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT = 4; // Address information is analysed

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_BUSY = 8; // Called party is busy

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE = 16; // Called party is unreachable

const TpInt32 P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY = 32; // No answer from called party

const TpInt32 P_EVENT_GCCS_ROUTE_SELECT_FAILURE = 64; // Failure in routing the call

const TpInt32 P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY = 128; // Party answered call

typedef TpInt32 TpCallEventName; /*Defines the names of event being notified. */

enum TpCallNotificationType

{

P_ORIGINATING,
// The notification is related to the originating user in the call.

P_TERMINATING
// The notification is related to the terminating user in the call.

};

struct TpCallEventCriteria

{

TpAddressRange DestinationAddress;
/*Destination address or address range*/

TpAddressRange OriginationAddress;
/*Origination address or address range */

TpCallEventName CallEventName; /*Name of the event(s) */

TpCallNotificationType CallNotificationType; /*Indicates whether the criteria are related to the originating or terminating user in the call */

};

/* Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID */

struct TpCallEventCriteriaResult

{

TpCallEventCriteria EventCriteria;

TpInt32 AssignmentID;

};

/* Defines a set of TpCallEventCriteriaResult */

typedef sequence <TpCallEventCriteriaResult> TpCallEventCriteriaResultSet;

//Defines the type of notification.

//Indicates whether it is related to the originating of the terminating user in the call.

struct TpCallEventInfo

{

TpAddress DestinationAddress;

TpAddress OriginatingAddress;

TpAddress OriginalDestinationAddress;

TpAddress RedirectingAddress;

TpCallAppInfoSet CallAppInfo;

TpCallEventName CallEventName;

TpCallNotificationType CallNotificationType;

};

/* Defines the Sequence of Data Elements that specify the cause of the release of a call.*/

struct TpCallReleaseCause {

TpInt32 Value;

TpInt32 Location;

};

/* Defines the Sequence of Data Elements that specify the reason for the call ending.*/

struct TpCallEndedReport

{

TpSessionID CallLegSessionID;

TpCallReleaseCause Cause;

};

/* Defines a specific call error. */

enum TpCallErrorType

{

P_CALL_ERROR_UNDEFINED, /* Undefined */

P_CALL_ERROR_INVALID_ADDRESS, /* The operation failed because an invalid address was given */

P_CALL_ERROR_INVALID_STATE /* The call was not in a valid state for the requested operation */

};

/* Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and call information errors. */

union TpCallAdditionalErrorInfo switch(TpCallErrorType)

{

case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;

default: short Dummy; // allows initialisation of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the additional information relating to an undefined call error. */

struct TpCallError

{

TpCallAdditionalErrorInfo AdditionalErrorInfo;

TpCallErrorType ErrorType;

TpDateAndTime ErrorTime;

};

/* Defines the cause of the call fault detected. */

enum TpCallFault

{

P_CALL_FAULT_UNDEFINED, /* Undefined */

P_CALL_TIMEOUT_ON_RELEASE, /* Final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time. */

P_CALL_TIMEOUT_ON_INTERRUPT /* Application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.*/

};

/* Defines the type of call information requested and reported */

const TpInt32 P_CALL_INFO_UNDEFINED = 0; /* Undefined */

const TpInt32 P_CALL_INFO_TIMES = 1; /* Relevant call times */

const TpInt32 P_CALL_INFO_RELEASE_CAUSE = 2; /* Call release cause. */

const TpInt32 P_CALL_INFO_INTERMEDIATE = 4; /* Send only intermediate reports (i.e., when a party leaves the call). */

typedef TpInt32 TpCallInfoType;

/* Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested may be undefined or not present. */

struct TpCallInfoReport

{

TpCallInfoType CallInfoType;

TpDateAndTime CallInitiationStartTime;

TpDateAndTime CallConnectedToResourceTime;

TpDateAndTime CallConnectedToDestinationTime;

TpDateAndTime CallEndTime;

TpCallReleaseCause Cause;

};

/* Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event. */

enum TpCallMonitorMode

{

P_CALL_MONITOR_MODE_INTERRUPT, /* The call event is intercepted by the call control SCF and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release) */

P_CALL_MONITOR_MODE_NOTIFY, /* The call event is detected by the call control SCF but not intercepted. The application is notified of the event and call processing continues */

P_CALL_MONITOR_MODE_DO_NOT_MONITOR /* Do not monitor for the event */

};

/* Defines the type of call overload that has been detected (and possibly acted upon) by the network. */

enum TpCallOverloadType

{

P_CALL_OVERLOAD_TYPE_UNDEFINED, /* Infinite interval (do not admit any calls) */

P_CALL_OVERLOAD_TYPE_NEW_CALLS, /* New calls to the application are causing overload (i.e. inbound overload) */

P_CALL_OVERLOAD_TYPE_ROUTED_CALLS /* Calls being routed to destination or origination addresses by the application are causing overload (i.e. outbound overload) */

};

/* Defines a specific call event report type. */

enum TpCallReportType

{

P_CALL_REPORT_UNDEFINED, /* Undefined */

P_CALL_REPORT_PROGRESS, /* Call routing progress event */

P_CALL_REPORT_ALERTING, /* Call alerting at address */

P_CALL_REPORT_ANSWER, /* Call answered at address */

P_CALL_REPORT_BUSY, /* Called address refused call due to busy */

P_CALL_REPORT_NO_ANSWER, /* No answer at called address */

P_CALL_REPORT_DISCONNECT, /* Call disconnect requested by address */

P_CALL_REPORT_REDIRECTED,

P_CALL_REPORT_SERVICE_CODE,

P_CALL_REPORT_ROUTING_FAILURE

};

/* Defines the Tagged Choice of Data Elements that specify additional call report information. */

union TpCallAdditionalReportInfo switch(TpCallReportType)

{

case P_CALL_REPORT_BUSY: TpCallReleaseCause RefuseBusy;

case P_CALL_REPORT_DISCONNECT: TpCallReleaseCause CallDisconnect;

case P_CALL_REPORT_REDIRECTED: TpAddress ForwardAddress;

case P_CALL_REPORT_SERVICE_CODE: TpCallReleaseCause ServiceCode;

case P_CALL_REPORT_ROUTING_FAILURE: TpCallReleaseCause RoutingFailure;

default: short Dummy; // allows initialisation of the union in the default case

};

struct TpCallReport

{

TpCallMonitorMode MonitorMode;

TpDateAndTime CallEventTime;

TpCallReportType CallReportType;

TpCallAdditionalReportInfo AdditionalReportInfo;

};

/* Defines the different types of service codes that can be received during the call.*/

enum TpCallServiceCodeType

{

P_CALL_SERVICE_CODE_UNDEFINED,
/* The type of service code is unknown. The corresponding string is operator specific.*/

P_CALL_SERVICE_CODE_DIGITS, /* The user entered a digit sequence during the call. The corresponding string is an ascii representation of the received digits. */

P_CALL_SERVICE_CODE_FACILITY, /* A facility information element is received. The corresponding string contains the facility information element as defined in ITU Q.932*/

P_CALL_SERVICE_CODE_U2U, /* A user-to-user message was received. The associated string contains the content of the user-to-user information element. */

P_CALL_SERVICE_CODE_HOOKFLASH,
/* The user performed a hookflash, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

P_CALL_SERVICE_CODE_RECALL /* The user pressed the register recall button, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

};

/* Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted. Defines the service code received during a call. For example, this may be a digit sequence, user-user information, recall, flash-hook or ISDN Facility Information Element. This data type is identical to a TpString. The coding of this data type is operator specific. */

struct TpCallServiceCode

{

TpCallServiceCodeType CallServiceCodeType;

TpString ServiceCodeValue;

};

/* Defines the Tagged Choice of Data Elements that specify specific criteria. */

union TpCallAdditionalReportCriteria switch(TpCallReportType)

{

case P_CALL_REPORT_NO_ANSWER: TpDuration NoAnswerDuration;

case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode ServiceCode;

default: short Dummy; // allows initialisation of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the criteria relating to call report requests. */

struct TpCallReportRequest

{

TpCallMonitorMode MonitorMode;

TpCallReportType CallReportType;

TpCallAdditionalReportCriteria AdditionalReportCriteria;

};

/* Defines a Numbered Set of Data Elements of TpCallReportRequest. */

typedef sequence <TpCallReportRequest> TpCallReportRequestSet;

const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1; /* The call supervision timer has expired. */

const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2; /* The call has ended, either due to timer expiry or calling or called party release. In case the called party disconnects but a follow-on call can still be made also this indication is used.*/

const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4; /* A warning tone has been applied. */

const TpInt32 P_CALL_SUPERVISE_UI_FINISHED = 8; /* The user interaction has finished */

/* Defines the responses from the call control SCF for calls that are supervised:*/

typedef TpInt32 TpCallSuperviseReport;

const TpInt32 P_CALL_SUPERVISE_RELEASE = 1; /* Release the call when the call supervision timer expires. */

const TpInt32 P_CALL_SUPERVISE_RESPOND = 2; /* Notify the application when the call supervision timer expires. */

const TpInt32 P_CALL_SUPERVISE_APPLY_TONE = 4; /* Send a warning tone to the controlling party when the call supervision timer expires. If call release is requested, then the call will be released following the tone after an administered time period */

/* Defines the following treatment of the call by the call control SCF when the call supervision timer expires.*/

typedef TpInt32 TpCallSuperviseTreatment;

/* Define the possible Exceptions. */

const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256;

const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257;

const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258;

const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;

const TpInt32 P_GCCS_INVALID_CRITERIA = 261;

const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 262;

exception TpGCCSException

{

TpInt32 exceptionType;

};

 /* The next data type is not used for an SCF implementation based
 on this specification: */

 typedef TpInt32 TpCallLoadControlIntervalRate;

 /* The next data type is not used for an SCF implementation based

 on this specification: */

const TpInt32 P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS = 0;

 /* The next data type is not used for an SCF implementation based

 on this specification: */

enum TpCallLoadControlMechanismType {

 P_CALL_LOAD_CONTROL_PER_INTERVAL

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

union TpCallLoadControlMechanism switch(TpCallLoadControlMechanismType) {

 case P_CALL_LOAD_CONTROL_PER_INTERVAL:
 TpCallLoadControlIntervalRate CallLoadControlPerInterval;

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

enum TpCallTreatmentType {

 P_CALL_TREATMENT_DEFAULT,

 P_CALL_TREATMENT_RELEASE,

 P_CALL_TREATMENT_SIAR

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

union TpCallAdditionalTreatmentInfo switch(TpCallTreatmentType) {

 case P_CALL_TREATMENT_SIAR: ui::TpUIInfo InformationToSend;

 default: short Dummy;

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

struct TpCallTreatment {

 TpCallTreatmentType CallTreatmentType;

 TpCallReleaseCause ReleaseCause;

 TpCallAdditionalTreatmentInfo AdditionalTreatmentInfo;

};

}; // end module cc

}; // end module osa

}; // end module threegpp

}; // end module org

#endif

// END file CC.idl

9.3.2
Generic Call Control IDL

// source file: GCC.idl

// GenericCall Interface description

#ifndef __OSA_CC_GCC_DEFINED

#define __OSA_CC_GCC_DEFINED

#include <CC.idl>

module org {

 module threegpp {

 module osa {

 module cc {

 module gcc {

 interface IpAppCallControlManager; // forward definition

 interface IpAppCall; // forward definition
 interface IpCall; // forward definition

/* Sequence of Data Elements that unambiguously specify the Generic Call object */

 struct TpCallIdentifier {

 IpCall CallReference;

 TpSessionID CallSessionID;

 };

 /* This interface is the SCF manager' interface for Generic Call Control. */

 interface IpCallControlManager : IpService {

 /* This method is used to enable call notifications. */

 void enableCallNotification (

 in IpAppCallControlManager appInterface,

 in TpCallEventCriteria eventCriteria,

 out TpAssignmentID assignmentID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method is used by the application to disable call notifications.*/

 void disableCallNotification (

 in TpAssignmentID assignmentID

)

 raises (TpGCCSException, TpGeneralException);

 void changeCallNotification (

 in TpAssignmentID assignmentID,

 in TpCallEventCriteria eventCriteria

)

 raises (TpGCCSException, TpGeneralException);

 void getCriteria (

 out TpCallEventCriteriaResultSet eventCriteria

)

 raises (TpGCCSException, TpGeneralException);
 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void createCall (

 in IpAppCall appCall,

 out TpCallIdentifier callReference

)

 raises (TpGCCSException,TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void setCallLoadControl (

 in TpDuration duration,

 in TpCallLoadControlMechanism mechanism,

 in TpCallTreatment treatment,

 in TpAddressRange addressRange,

 out TpAssignmentID assignmentID

)

 raises (TpGCCSException, TpGeneralException);

 };

 /* This interface provides the means to control a simple call. */

 interface IpCall : IpService {

 /* This method requests routing of the call to the destination party.*/

 void routeReq (

 in TpSessionID callSessionID,

 in TpCallReportRequestSet responseRequested,

 in TpAddress targetAddress,

 in TpAddress originatingAddress,

 in TpAddress originalDestinationAddress,

 in TpAddress redirectingAddress,

 in TpCallAppInfoSet appInfo,

 out TpSessionID callLegSessionID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method requests the release of the call and associated objects.*/

 void release (

 in TpSessionID callSessionID,

 in TpCallReleaseCause cause

)

 raises (TpGCCSException, TpGeneralException);

 /* This method requests that the relationship between the application and

 the call and associated objects be de-assigned. */

 void deassignCall (

 in TpSessionID callSessionID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method requests information associated with the call.*/

 void getCallInfoReq (

 in TpSessionID callSessionID,

 in TpCallInfoType callInfoRequested

)

 raises (TpGCCSException, TpGeneralException);

 /* Set an operator specific charge plan for the call. */

 void setCallChargePlan (

 in TpSessionID callSessionID,

 in TpCallChargePlan callChargePlan

)

 raises (TpGCCSException, TpGeneralException);

 /* The application calls this method to supervise a call. */

 void superviseCallReq (

 in TpSessionID callSessionID,

 in TpDuration time,

 in TpCallSuperviseTreatment treatment

)

 raises (TpGCCSException, TpGeneralException);

 void setAdviceOfCharge(

 in TpSessionID callSessionID,

 in TpAoCInfo aOCInfo,

 in TpDuration tariffSwitch

)

 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void getMoreDialledDigitsReq (

 in TpSessionID callSessionID,

 in TpInt32 length

)

 raises (TpGeneralException, TpGCCSException);

 };

 /* The generic call control manager application interface provides the

 application call control management functions to the generic call control

 SCF. */

 interface IpAppCallControlManager : IpOsa {

 void callAborted (

 in TpSessionID callReference

)

 raises (TpGCCSException, TpGeneralException);

 /* This method notifies the application of the arrival of a call-related event. */

 void callEventNotify (

 in TpCallIdentifier callReference,

 in TpCallEventInfo eventInfo,

 in TpAssignmentID assignmentID,

 out IpAppCall appInterface

)

 raises (TpGCCSException, TpGeneralException);

/* This method indicates to the application that all event notifications

 have been terminated .*/

 void callNotificationInterrupted ()

 raises (TpGCCSException, TpGeneralException);

 void callNotificationContinued ()

 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void callOverloadEncountered (

 in TpAssignmentID assignmentID

)

 raises (TpGeneralException,TpGCCSException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void callOverloadCeased (

 in TpAssignmentID assignmentID

)

 raises (TpGeneralException,TpGCCSException);

 };

 /* The application side of the simple call interface is used to handle call

 request responses and state reports. */

 interface IpAppCall : IpOsa {

 /* This method indicates that the request to route the call to the

 destination was successful.*/

 void routeRes (

 in TpSessionID callSessionID,

 in TpCallReport eventReport,

 in TpSessionID callLegSessionID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method indicates that the request to route the call to the

 destination party was unsuccessful. */

 void routeErr (

 in TpSessionID callSessionID,

 in TpCallError errorIndication,

 in TpSessionID callLegSessionID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method reports all necessary information requested by the

 application, for example to calculate charging.*/

 void getCallInfoRes (

 in TpSessionID callSessionID,

 in TpCallInfoReport callInfoReport

)

 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports that the original request was erroneous,

 or resulted in an error condition.*/

 void getCallInfoErr (

 in TpSessionID callSessionID,

 in TpCallError errorIndication

)

 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports a call supervision event to the application.*/

 void superviseCallRes (

 in TpSessionID callSessionID,

 in TpCallSuperviseReport report,

 in TpDuration usedTime

)

 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports a call supervision error to the application.*/

 void superviseCallErr (

 in TpSessionID callSessionID,

 in TpCallError errorIndication

)

 raises (TpGCCSException, TpGeneralException);

 /* This method indicates to the application that a fault in the network has

 been detected.*/

 void callFaultDetected (

 in TpSessionID callSessionID,

 in TpCallFault fault

)

 raises (TpGCCSException, TpGeneralException);

void callEnded (

 in TpSessionID callSessionID,

 in TpCallEndedReport report

)

 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void getMoreDialledDigitsRes (

 in TpSessionID callSessionID,

 in TpString digits

)

 raises (TpGeneralException,TpGCCSException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void getMoreDialledDigitsErr (

 in TpSessionID callSessionID,

 in TpCallError errorIndication

)

 raises (TpGeneralException,TpGCCSException);

 };

 }; // end module gcc

 }; // end module cc

 }; // end module osa

 }; // end module threegpp

}; // end module org

#endif

// END file GCC.idl

9.3.3
Enhanced Call Control IDL

The IDL in this section is only supplied in order to make the User Interaction IDL compile.

With the createUICall() method on the UIManager object it is possible to associate the UICall object to a Call object as well as a CallLeg object. The CallLeg object is not used in this specification. However the IDL for this interface has to be supplied otherwise the User Interaction IDL will not compile.

// source file: ECC.idl

#ifndef __OSA_CC_ECC_DEFINED

#define __OSA_CC_ECC_DEFINED

#include <GCC.idl>

module org {

 module threegpp {

 module osa {

 module cc {

 module ecc {

typedef TpInt32 TpMediaType;

const TpInt32 P_AUDIO = 1;

const TpInt32 P_VIDEO = 2;

const TpInt32 P_DATA = 4;

typedef TpInt32 TpAudioCapabilitiesType;

typedef TpInt32 TpVideoCapabilitiesType;

typedef TpInt32 TpDataCapabilities;

union TpChannelDataTypeRequest switch(TpMediaType) {

case P_DATA: TpDataCapabilities Data;

case P_VIDEO: TpVideoCapabilitiesType Video;

case P_AUDIO: TpAudioCapabilitiesType Audio;

};

typedef TpChannelDataTypeRequest TpChannelDataType;

enum TpChannelDirection {

P_INCOMING,

P_OUTGOING

};

struct TpChannelRequest {

TpChannelDataTypeRequest DataTypeRequest;

TpChannelDirection Direction;

};

typedef sequence <TpChannelRequest> TpChannelRequestSet;

enum TpCallLegType {

P_CALL_LEG_TYPE_UNDEFINED,

P_CALL_LEG_TYPE_CONTROLLING,

P_CALL_LEG_TYPE_PASSIVE

 };

enum TpCallLegInfoType {

P_CALL_LEG_INFO_UNDEFINED,

P_CALL_LEG_INFO_ADDRESS,

P_CALL_LEG_INFO_RELEASE_CAUSE,

P_CALL_LEG_INFO_APPINFO,

P_CALL_LEG_INFO_TIMES

 };

interface IpMMChannel : IpService {

void close (

in TpSessionID channelSessionID

)

raises (TpGeneralException,TpGCCSException);

};

struct TpChannel {

TpChannelDirection Direction;

IpMMChannel Channel;

TpChannelDataType DataType;

TpInt32 ChannelNumber;

};

typedef sequence <TpChannel> TpChannelSet;

interface IpCallLeg : IpService {

void routeCallLegToOrigination (

in TpSessionID callLegSessionID,

in TpAddress targetAddress,

in TpAddress originatingAddress,

in TpAddress originalCalledAddress,

in TpAddress redirectingAddress,

in TpCallAppInfoSet appInfo

)

raises (TpGeneralException,TpGCCSException);

void routeCallLegToDestination (

in TpSessionID callLegSessionID,

in TpAddress targetAddress,

in TpAddress originatingAddress,

in TpAddress originalCalledAddress,

in TpAddress redirectingAddress,

in TpCallAppInfoSet appInfo

)

raises (TpGeneralException,TpGCCSException);

void eventReportReq (

in TpSessionID callLegSessionID,

in TpCallReportRequestSet eventReportsRequested

)

raises (TpGeneralException,TpGCCSException);

void release (

in TpSessionID callLegSessionID,

in TpCallReleaseCause cause

)

raises (TpGeneralException,TpGCCSException);

void getInfoReq (

in TpSessionID callLegSessionID,

in TpCallLegInfoType callLegInfoRequested

)

raises (TpGeneralException,TpGCCSException);

void getType (

in TpSessionID callLegSessionID,

out TpCallLegType callLegType

)

raises (TpGeneralException,TpGCCSException);

void getCall (

in TpSessionID callLegSessionID,

out org::threegpp::osa::cc::gcc::TpCallIdentifier callReference

)

raises (TpGeneralException,TpGCCSException);

void mediaChannelAllow (

in TpSessionID callLegSessionID,

in TpSessionIDSet channelList

)

raises (TpGeneralException,TpGCCSException);

void getMediaChannels (

in TpSessionID callLegSessionID,

out TpChannelSet channels

)

raises (TpGeneralException,TpGCCSException);

void mediaChannelMonitorReq (

in TpSessionID callLegSessionID,

in TpChannelRequestSet channelEventCriteria,

in TpCallMonitorMode monitorMode

)

raises (TpGeneralException,TpGCCSException);

};

struct TpCallLegIdentifier {

 TpSessionID CallLegSessionID;

 IpCallLeg CallLegReference;

};

 }; // end module ecc

 }; // end module cc

 }; // end module osa

 }; // end module threegpp

}; // end module org

#endif

// END file ECC.idl

9.4
User Interaction IDL

9.4.1
Common data types for User Interaction

// source file: UI.idl

// User Interaction data description

#ifndef __OSA_UI_DEFINED

#define __OSA_UI_DEFINED

#include <OSA.idl>

module org {

 module threegpp {

 module osa {

 module ui {

/* Defines the additional properties for the collection of information */

struct TpUICollectCriteria {

TpInt32 MinLength; /* minimum number of characters to collect */

TpInt32 MaxLength;

 /* maxmum number of characters to collect */

TpString EndSequence;
 /* character(s) which terminate an input of variable length. */

TpDuration StartTimeout; /* defines a duration (in seconds) */

TpDuration InterCharTimeout; /* value for the inter-character time-out timer. */

};

/* Defines the UI call error codes. */

enum TpUIError {

P_UI_ERROR_UNDEFINED,

 /* Undefined error */

P_UI_ERROR_ILLEGAL_ID,

 /* The information id specified is invalid */

P_UI_ERROR_ID_NOT_FOUND,

 /* Information id is not known to the the User Interaction SCFs */

P_UI_ERROR_RESOURCE_UNAVAILABLE,
 /* Resources used by the User Interaction SCFs are unavailable. */

P_UI_ERROR_ILLEGAL_RANGE,

 /* The values for manimum and maximum collection length are out of range */

P_UI_ERROR_IMPROPER_CALLER_RESPONSE, /* Improper user response */

P_UI_ERROR_ABANDON,

 /* Specified leg is disconnected before the send information completed */

P_UI_ERROR_NO_OPERATION_ACTIVE,
 /* No active user interaction for the specified leg. */

P_UI_ERROR_NO_SPACE_AVAILABLE
 /* There is no more storage capacity to record the message.*/

};

/* Defines the type of the dataString parameter in the method userInteractionEventNotify */

 enum TpUIEventInfoDataType {

P_UI_EVENT_DATA_TYPE_UNDEFINED,

 /* Undefined */

P_UI_EVENT_DATA_TYPE_UNSPECIFIED,

 /* Unspecified data */

P_UI_EVENT_DATA_TYPE_TEXT,

 /* Text */

P_UI_EVENT_DATA_TYPE_USSD_DATA

 /* USSD data starting with coding scheme */

};

/* Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification */

struct TpUIEventCriteria {

TpAddressRange OriginatingAddress; /* Address of the end-user for which notification shall be handled */

 TpAddressRange DestinationAddress;

TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */

};

/* Defines the Sequence of Data Elements that specify a UI notification */

struct TpUIEventInfo {

TpAddress OriginatingAddress; /* Address of the end-user for which notification shall be handled */

 TpAddress DestinationAddress;

TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */

 TpUIEventInfoDataType DataTypeIndication;

 TpString DataString;

};

/* Defines the cause of the UI fault detected. */

enum TpUIFault {

P_UI_FAULT_UNDEFINED,
/* Undefined */

P_UI_CALL_DEASSIGNED

/* The related Call object has been deassigned. */

};

/* Defines the type of information send to the end-user */

enum TpUIInfoType {

P_UI_INFO_ID,

/* The information consists of an ID */

P_UI_INFO_DATA,
/* The information consists of a data string */

P_UI_INFO_ADDRESS
/* The information consists of a URL. */

};

/* Defines the Tagged Choice of Data Elements that specifies the information to be send to a end-user. */

union TpUIInfo switch(TpUIInfoType) {

case P_UI_INFO_ID: TpInt32 InfoID;
 /*Defines the ID of the user information script or stream to send to an end-user.*/

case P_UI_INFO_DATA: TpString InfoData;
 /*Defines the data to be sent to an end-user’s terminal.*/

case P_UI_INFO_ADDRESS: TpURL InfoAddress;
 /*Defines the URL of the text or stream to be sent to an end-user’s terminal*/

};

/* Defines the criteria for recording of messages */

struct TpUIMessageCriteria {

TpString EndSequence; /* Defines the character(s) which terminate an input of variable length. */

TpDuration MaxMessageTime; /* Specifies the maximum allowed duration in seconds. */

TpInt32 MaxMessageSize; /* Specifies the maximum allowed size in bytes of the message. */

};

/* Defines the UI call reports if a response was requested. */

enum TpUIReport {

P_UI_REPORT_UNDEFINED,

/* Undefined report */

P_UI_REPORT_ANNOUNCEMENT_ENDED,
/* Confirmation that the announcement has ended */

P_UI_REPORT_LEGAL_INPUT,

/* Information collected., meeting the specified criteria. */

P_UI_REPORT_NO_INPUT,

/* User immediately entered the delimiter character. No valid information has been returned */

P_UI_REPORT_TIMEOUT,

 /* User did not input any response before the input timeout expired */

P_UI_REPORT_MESSAGE_STORED,

/* A message has been stored successfully */

P_UI_REPORT_MESSAGE_NOT_STORED
/* The message has not been stored successfully */

};

/* Defines the situations for which a response is expected following the user interaction. */

 const TpInt32 P_UI_RESPONSE_REQUIRED = 1; /* A response must be sent when the request has completed. */

const TpInt32 P_UI_LAST_ANNOUNCEMENT_IN_A_ROW = 2; /* This is the final announcement within a sequence. */

const TpInt32 P_UI_FINAL_REQUEST = 4; /* This is the final request. */

typedef TpInt32 TpUIResponseRequest; /* Defines the situations for which a response is expected following the user interaction. */

/* Defines the type of the variable parts in the information to send to the user. */

enum TpUIVariablePartType {

P_UI_VARIABLE_PART_INT,
/* Variable part is of type integer */

P_UI_VARIABLE_PART_ADDRESS,
/* Variable part is of type address */

P_UI_VARIABLE_PART_TIME,
/* Variable part is of type time */

P_UI_VARIABLE_PART_DATE,
/* Variable part is of type date */

P_UI_VARIABLE_PART_PRICE
/* Variable part is of type price */

};

/* Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user. */

union TpUIVariableInfo switch(TpUIVariablePartType) {

case P_UI_VARIABLE_PART_INT: TpInt32 VariablePartInteger;

case P_UI_VARIABLE_PART_ADDRESS: TpString VariablePartAddress;

case P_UI_VARIABLE_PART_TIME: TpTime VariablePartTime;

case P_UI_VARIABLE_PART_DATE: TpDate VariablePartDate;

case P_UI_VARIABLE_PART_PRICE: TpPrice VariablePartPrice;

};

/* Defines a Numbered Set of Data Elements of TpUIVariableInfo. */

 typedef sequence <TpUIVariableInfo> TpUIVariableInfoSet;

/* Define the possible Exceptions. */

exception TpGUISException {

TpInt32 exceptionType;

};

const TpInt32 P_GUIS_INVALID_CRITERIA = 768; /* Invalid criteria specified */

const TpInt32 P_GUIS_ILLEGAL_ID = 769;
 /* Information id specified is invalid */

const TpInt32 P_GUIS_ID_NOT_FOUND = 770;
 /* Information id is not known to the User Interaction Service */

const TpInt32 P_GUIS_ILLEGAL_RANGE = 771;
 /* The values for minimum and maximum collection length are out of range */

const TpInt32 P_GUIS_INVALID_COLLECTION_CRITERIA = 772; /* Invalid collection criteria specified */

const TpInt32 P_GUIS_INVALID_NETWORK_STATE = 774; /* Although the sequence of method calls is allowed by the gateway, the underlying protocol can not support it. */

 const TpInt32 P_GUIS_UNEXPECTED_SEQUENCE = 775; /* Although the sequence of method calls is allowed by the gateway, the underlying protocol can not support it. */

 }; // end module ui

 }; // end module osa

 }; // end module threegpp

}; // end module org

#endif

// END file UI.idl

9.4.2
Generic User Interaction IDL

// source file: GUI.idl

// GUIS Interface description

#ifndef __OSA_UI_GUI_DEFINED

#define __OSA_UI_GUI_DEFINED

#include <UI.idl>

#include <ECC.idl>

module org {

 module threegpp {

 module osa {

 module ui {

 module gui {

 interface IpAppUIManager; // forward definition;

 interface IpAppUI; // forward definition;

 interface IpAppUICall; // forward definition;

 /* The Generic User Interaction SCF Interface provides functions to send

 information to, or gather information from the user. */

 interface IpUI : IpService {

 /* This method plays an announcement or sends other information to the user.*/

 void sendInfoReq (

 in TpSessionID userInteractionSessionID,

 in TpUIInfo info,

 in TpUIVariableInfoSet variableInfo,

 in TpInt32 repeatIndicator,

 in TpUIResponseRequest responseRequested,

 out TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 /* This method plays an announcement or sends other information to the user

 and collects some information from the user. */

 void sendInfoAndCollectReq (

 in TpSessionID userInteractionSessionID,

 in TpUIInfo info,

 in TpUIVariableInfoSet variableInfo,

 in TpUICollectCriteria criteria,

 in TpUIResponseRequest responseRequested,

 out TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 /* This method requests that the relationship between the application and

 the user interaction object be released. */

 void release (

 in TpSessionID userInteractionSessionID

)

 raises (TpGUISException, TpGeneralException);

 };

 /* Defines the Sequence of Data Elements that unambiguously specify the UI object */

 struct TpUIIdentifier {

 TpSessionID UserInteractionSessionID;

 IpUI UIRef;

 };

 /* The Call User Interaction Service Interface provides functions to send

 information to, or gather information from, the user. */

 interface IpUICall : IpUI {

 /* This asynchronous method aborts the specified user interaction operation. */

 void abortActionReq (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);
 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void recordMessageReq (

 in TpSessionID userInteractionSessionID,

 in TpUIInfo info,

 in TpUIMessageCriteria criteria,

 out TpAssignmentID assignmentID
)

 raises (TpGUISException, TpGeneralException);
 };

 /* Defines the Sequence of Data Elements that unambiguously specify the UICall object. */

 struct TpUICallIdentifier {

 IpUICall UICallRef;

 TpSessionID UserInteractionSessionID;

 };

 /* This interface is the 'SCF manager' interface for the Generic User Interaction SCF. */

 interface IpUIManager : IpService {

 /* This method is used to create a new user interaction object for non-call related purposes */

 void createUI (

 in IpAppUI appUI,

 in TpAddress userAddress,

 out TpUIIdentifier userInteraction

)

 raises (TpGUISException, TpGeneralException);

 /* This method is used to create a new user interaction object for call related purposes. */

 void createUICall (

 in IpAppUICall appUI,

 in org::threegpp::osa::cc::gcc::TpCallIdentifier callIdentifier,

 in org::threegpp::osa::cc::ecc::TpCallLegIdentifier callLegIdentifier,

 out TpUICallIdentifier userInteraction

)

 raises (TpGUISException, TpGeneralException);

 /* This method is used to enable the reception of user initiated user interaction. */

 void enableUINotification (

 in IpAppUIManager appInterface,

 in TpUIEventCriteria eventCriteria,

 out TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 /* This method is used by the application to disable UI notifications. */

 void disableUINotification (

 in TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 };

 /* The Generic User Interaction SCF manager application interface provides

 the application call management functions to the Generic User Interaction SCF. */

 interface IpAppUIManager : IpOsa {

 /* This method indicates to the application that the User Interaction SCF

 instance has terminated or closed abnormally. */

 void userInteractionAborted (

 in TpUIIdentifier userInteraction

)

 raises (TpGUISException, TpGeneralException);

 /* This method notifies the application of an user initiated request for user interaction. */

 void userInteractionEventNotify (

 in TpUIIdentifier ui,

 in TpUIEventInfo eventInfo,

 in TpAssignmentID assignmentID,

 out IpAppUI appInterface

)

 raises (TpGUISException, TpGeneralException);

 void userInteractionNotificationInterrupted ()

 raises (TpGUISException, TpGeneralException);

 void userInteractionNotificationContinued ()

 raises (TpGUISException, TpGeneralException);

 };

 /* The User Interaction Application Interface is used to handle generic user

 interaction request responses and reports. */

 interface IpAppUI : IpOsa {

 /* This method informs the application about the start or the completion of a sendInfoCallReq(). */

 void sendInfoRes (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIReport response

)

 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information was unsuccessful. */

 void sendInfoErr (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIError error

)

 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method returns the information collected to the application. */

 void sendInfoAndCollectRes (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIReport response,

 in TpString info

)

 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information

 and collect a response was unsuccessful. */

 void sendInfoAndCollectErr (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIError error

)

 raises (TpGUISException, TpGeneralException);

 /* This method indicates to the application that a fault has been detected in the user interaction. */

 void userInteractionFaultDetected (

 in TpSessionID userInteractionSessionID,

 in TpUIFault fault

)

 raises (TpGUISException, TpGeneralException);

 };

 /* The Call User Interaction Application Interface is used to handle call user

 interaction request responses and reports. */

 interface IpAppUICall : IpAppUI {

 /* This method confirms that the request to abort a user interaction operation on a call was successful. */

 void abortActionRes (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to abort a user interaction

 operation on a call resulted in an error.*/

 void abortActionErr (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIError error

)

 raises (TpGUISException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void recordMessageRes (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIReport response,

 in TpInt32 messageID

)

 raises (TpGUISException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void recordMessageErr (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIError error

)

 raises (TpGUISException, TpGeneralException);

 };

 }; // end module gui

 }; // end module ui

 }; // end module osa

 }; // end module threegpp

}; // end module org

#endif

// END file GUI.idl

1

_997805625.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 2/09/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:

ftp://ftp.3gpp.org/information/3gCRF-??.DOC

2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail.

3)
Open the specification to which you wish to make a change. It is very IMPORTANT to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:

for the 3GPP: ftp://ftp.3gpp.org/specifications/ for SMG: http://docbox.etsi.org/tech-org/document/smg/specs

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:

ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.

6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.

7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)

8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.

9)
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.

10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".

Examples of expressions of prevision in 3GPP specifications

To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:

SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"

SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".

CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".

A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:

ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A
The CR cover sheet

This annex provides further information on how to fill out the cover sheet of a CR.

The header:

a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.

The title box:

b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG. For GSM specifications, it is prefixed with an "A"

c)
The 3G or GSM specification number (e.g. 21.111 for 3G or 12.05 for GSM).

d)
The TSG or SMG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting.

e)
for approval/for information: one box only shall be marked with an "X"

Proposed change affects:

f)
At least one box shall be marked with an "X"

Source:

g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name (and Tdoc number) should be used instead.

Subject:

h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"

good examples:
"Clarification to FETCH command"

"Alignment of operation and parameter names"

recently used

bad examples:
"correction"

"editorial correction"

"correction to TS xxx.yy"

"various improvements"

Work item:

h)
The name of the 3G work item for which the CR is relevant.

Category and release:

i)
Choose one category only

Reason:

j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.

Clauses Affected:

m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".

Other specs affected:

n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.

MS test specifications: to be used if a change is needed to the MS test specifications.

BSS test specifications: to be used if a change is needed to the base station test specifications.

O&M specifications: to be used if a change is needed to O&M specifications.

When listing other CRs in part n) use, for example, the form "21.111-CR001" or "12.05-A123"

How to create a CR for 3G or SMG specifications.

File location: http://ftp.3gpp.org/information/3gCRF-??.doc

