3GPP TSG CN WG5
TDoc N5-00057
Stockholm, Sweden
9 May ÷ 11 May 2000
Title:
Corrections and improvements to the Call Control / User interaction SCS (revised from N5-00049)

Agenda Item:

Source:
Ericsson
Document for:
Discussion / Decision

1 introduction

This contribution discusses proposed modifications to the Call Control and User Interaction SCS.

2 Proposed modifications

2.1 New SuperviseCallRes indications

In case the application requested supervision of the call and the called party disconnects while a follow-on call can be made, superviseCallRes should be invoked on the application. In principle the TpCallSuperviseReport indication P_CALL_SUPERVISE_CALL_ENDED can be used in this context, but the description should also cover this.

Additionally, superviseCall also supports charging of User-interaction. In order for the application to be able to derive the time a user has been connected to an announcement device, an additional indication called P_CALL_SUPERVISE_UI_FINISHED should be added.

This will change the data definition for TpCallSuperviseReport as follows:

8.3.3.31 TpCallSuperviseReport

Defines the responses from the call control SCF for calls that are supervised. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_SUPERVISE_TIMEOUT
01h
The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED
02h
The call has ended, either due to timer expiry or call party release. In case the called party disconnects but a follow-on call can still be made also this indication is used.

P_CALL_SUPERVISE_TONE_APPLIED
04h
A warning tone has been applied This is only sent in combination with P_CALL_SUPERVISE_TIMEOUT.

P_CALL_SUPERVISE_UI_FINISHED
08h
The user interaction has finished.

2.1.1 Call Control IDL

 const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1; /* The call supervision timer has expired. */

const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2; /* The call has ended, either due to timer expiry or calling or called party release. In case the called party disconnects but a follow-on call can still be made also this indication is used.*/

const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4; /* A warning tone has been applied. */

 const TpInt32 P_CALL_SUPERVISE_UI_FINISHED = 8; /* The user interaction has finished */

/* Defines the responses from the call control SCF for calls that are supervised:*/

typedef TpInt32 TpCallSuperviseReport;

2.2 Clarification on Tpcallinforeport

It should be made more clear in which case which data elements of the TpCallInfoReport are valid:

8.3.3.14
TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested is invalid.

Sequence Element Name
Sequence Element Type
Description

CallInfoType
TpCallInfoType
The type of call report.

CallInitiationStartTime
TpDateAndTime
The time and date when the call, or follow-on call, was started.

CallConnectedToResourceTime
TpDateAndTime
The date and time when the call was connected to the resource.

This data element is only valid in case information on user interaction is reported.

CallConnectedToDestinationTime
TpDateAndTime
The date and time when the call was connected to the destination (i.e. when the destination answered the call). If the destination did not answer the time is set to an empty string.

This data element is not valid in case information on user interaction is reported with an intermediate report.

CallEndTime
TpDateAndTime
The date and time when the call, follow-on call or user-interaction was terminated.

Cause
TpCallReleaseCause
The cause of call termination.

2.3 Clarification on “call ended” in TpCallReportType

In order to clearly specify what is meant with the indication P_CALL_REPORT_CALL_ENDED, the following addition to the description is proposed:

8.3.3.27 TpCallReportType

Defines a specific call event report type.

Name
Value
Description

P_CALL_REPORT_UNDEFINED
0
Undefined

P_CALL_REPORT_PROGRESS
1
Call routing progress event: an indication from the network that progress has been made in routing the call to the requested called party.

P_CALL_REPORT_ALERTING
2
Call is alerting at the called party.

P_CALL_REPORT_ANSWER
3
Call answered at address

P_CALL_REPORT_BUSY
4
Called address refused call due to busy

P_CALL_REPORT_NO_ANSWER
5
No answer at called address

P_CALL_REPORT_DISCONNECT
6
Call disconnect requested by called party

P_CALL_REPORT_REDIRECTED
7
Call redirected to new address: an indication from the network that the call has been redirected to a new address.

P_CALL_REPORT_SERVICE_CODE
8
Mid-call service code received

P_CALL_REPORT_ROUTING_FAILURE
9
Call routing failed - re-routing is possible

P_CALL_REPORT_CALL_ENDED
10
Call has ended (disconnected): an indication from the network that the call has been ended.

For a two-party call this means that either the calling party has disconnected when the call was in progress or the called party has disconnected when the call was in progress while the application had no monitor of type interrupt for this event. In case the calling party abandons before a connection with the called party could be established an error report will be sent to the application with routeCallToDestinationErr().

2.4 Corrections to the exceptions

The P_GCCS_INVALID_STATE exception indication covers the same case as P_GCCS_UNEXPECTED_SEQUENCE and should therefore be removed. The latter indication should also be added to the User Interaction exception indications and be called P_GUIS_UNEXPECTED_SEQUENCE.

Furthermore, the P_GCCS_NETWORK_DEASSIGN can be removed because the call object keeps active until the call has ended or the application has de-assigned or released the call. The same holds true for the P_GUIS_NETWORK_DEASSIGN indication.

This leads to the following changes:

2.4.1 TpResultInfo data-type

8.1.4.8 TpResultInfo

P_GCCS_SERVICE_INFORMATION_MISSING
0100h
Information relating to the Call Control SCF could not be found

P_GCCS_SERVICE_FAULT_ENCOUNTERED
0101h
Fault detected in the Call Control SCF

P_GCCS_UNEXPECTED_SEQUENCE
0102h
Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams for the call or the call leg.

P_GCCS_INVALID_ADDDRESS
0103h
Invalid address specified

P_GCCS_INVALID_STATE
0104h
Invalid state specified

P_GCCS_INVALID_CRITERIA
0105h
Invalid criteria specified

P_GCCS_INVALID_NETWORK_STATE
0106h
Although the sequence of method calls is allowed by the OSA gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode.

P_GCCS_NETWORK_DEASSIGN
0107h
The relation between the network and the OSA gateway is terminated. Therefore, the gateway can no longer influence the call. This can happen after the last requested report is sent to the application.

To prevent this error, the application should ensure that it has requested events which are not yet reported.

P_GUIS_INVALID_CRITERIA
0300h
Invalid criteria specified

P_GUIS_ILLEGAL_ID
0301h
Information id specified is invalid

P_GUIS_ID_NOT_FOUND
0302h
A legal information id is not known to the User Interaction SCF

P_GUIS_ILLEGAL_RANGE
0303h
The values for minimum and maximum collection length are out of range.

P_GUIS_INVALID_COLLECTION_CRITERIA
0304h
Invalid collection criteria specified

P_GUIS_NETWORK_DEASSIGN
0305h
The relation between the network and the OSA gateway is terminated. Therefore, the gateway can no longer perform UI operations. This can happen after the last requested report is sent to the application.

To prevent this error, the application should ensure that it has requested events which are not yet reported.

P_GUIS_INVALID_NETWORK_STATE
0306h
Although the sequence of method calls is allowed by the OSA gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode.

P_GUIS_UNEXPECTED_SEQUENCE
0307h
Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams.

2.4.2 Call Control IDL

/* Define the possible Exceptions. */

const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256;

const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257;

const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258;

const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;

const TpInt32 P_GCCS_INVALID_STATE = 260;

const TpInt32 P_GCCS_INVALID_CRITERIA = 261;

const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 262;

const TpInt32 P_GCCS_NETWORK_DEASSIGN = 263;

2.4.3 UI IDL

const TpInt32 P_GUIS_INVALID_CRITERIA = 768; /* Invalid criteria specified */

const TpInt32 P_GUIS_ILLEGAL_ID = 769;
 /* Information id specified is invalid */

const TpInt32 P_GUIS_ID_NOT_FOUND = 770;
 /* Information id is not known to the User Interaction Service */

const TpInt32 P_GUIS_ILLEGAL_RANGE = 771;
 /* The values for minimum and maximum collection length are out of range */

const TpInt32 P_GUIS_INVALID_COLLECTION_CRITERIA = 772; /* Invalid collection criteria specified */

const TpInt32 P_GUIS_NETWORK_DEASSIGN = 773; /* The relation between the network and the gateway is terminated. */

const TpInt32 P_GUIS_INVALID_NETWORK_STATE = 774; /* Although the sequence of method calls is allowed by the gateway, the underlying protocol can not support it. */

const TpInt32 P_GUIS_UNEXPECTED_SEQUENCE = 775; /* Although the sequence of method calls is allowed by the gateway, the underlying protocol can not support it. */

2.5 TpUIResponserequest

The TpUIResponseRequest datatype is not correct in the IDL:

Change from:

/* Defines the situations for which a response is expected following the user interaction. */

enum TpUIResponseRequest {

P_UI_RESPONSE_REQUIRED,

/* A response must be sent when the announcement has completed. */

P_UI_LAST_ANNOUNCEMENT_IN_A_ROW,
/* This is the final announcement within a sequence. */

P_UI_FINAL_REQUEST

 /* This is the final request. */

};

to:

const TpInt32 P_UI_RESPONSE_REQUIRED = 1; /* A response must be sent when the announcement has completed. */

const TpInt32 P_UI_LAST_ANNOUNCEMENT_IN_A_ROW = 2; /* This is the final announcement within a sequence. */

const TpInt32 P_UI_FINAL_REQUEST = 4; /* This is the final request. */

typedef TpInt32 TpUIResponseRequest; /* Defines the situations for which a response is expected following the user interaction. */

2.6 Notification STOP / START MECHANISM in call control manager and UI manager

The mechanism for indicating that the event notification from the Call Control SCS to the application has been stopped should be extended with a method indicating that the event notification has been started again. Proposed is to rename the callNotificationTerminated() method on the AppCallControlManager to callNotificationInterrupted and add a method callNotificationContinued(). Because the same mechanism is applicable to User Interaction, proposed is to add the methods userInteractionTerminated() and userInteractionContinued() to the AppUIManager.

This leads to new class diagrams for the Call Control and User Interaction and new state transition diagrams for the Call ControlManager and the UI Manager.:

2.6.1 Call Control Class diagram

Change the current class diagram to:

[image: image1.wmf]IpCall

routeCallToDestinationReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

superviseCallReq()

setAdviceOfCharge()

<<Interface>>

IpCallControlManage

r

enableCallNotification()

disableCallNotification()

<<Interface>>

IpAppCall

routeCallToDestinationRes()

routeCallToDestinationErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

<<Interface>>

1

1

<<

uses>>

IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationInterrupted()

callNotificationContinued()

<<Interface>>

1

1

<<

uses>>

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

2.6.2 User Interaction class diagram

Replace the current class diagram with:

[image: image2.wmf]IpUICall

abortActionReq()

<<Interface>>

IpAppUICall

abortActionRes()

abortActionErr()

<<Interface>>

1

1

<<

uses>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpAppUIManager

userInteractionAborted()

userInteractionEventNotify()

userInteractionNotificationInterrupted()

userInteractionNotificationContinued()

<<Interface>>

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<Interface>>

1

1

<<

uses>>

IpUIManager

createUI()

createUICall()

enableUINotification()

disableUINotification()

<<Interface>>

1

1

<<

uses>>

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

2.6.3 Call ControlManager state transition diagram

Change to STD to:

[image: image3.wmf]Active

Creation of

CallControlManager

by Service Factory

Notification terminated

"new"

enableCallNotification

disableCallNotification

"a call object has terminated abnormally" ^IpAppCallControlManager.callAborted

"arrival of call related event"[notification active for this call event] / create a Call object ^IpAppCallControlManager.callEventNotify

disableCallNotification

"a call object has terminated abnormally" ^IpAppCallControlManager.callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^IpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

^IpAppCallControlManager.callNotificationInterrupted

2.6.4 UIManager state transition diagram

Replace the current STD with:

[image: image4.wmf]Active

exit/ release UI objects

Creation of UIManager

by Service Factory

"new"

createUI / create UI object

createUICall / create UICall object

enableUINotification

disableUINotification

"arrival of user initiated request for user interaction"[notification active for this ui

event] / create a UI object ^IpAppUIlManager.userInteractionEventNotify

Notification

Terminated

IpAccess.terminateServiceAgreement

"notifications not possible" ^userInteractionNotificationInterrupted

"notifications possible again" ^userInteractionNotificationContinued

IpAccess.terminateServiceAgreement

disableUINotification

2.7 Call Notification Type

Note: this was already proposed in Tdoc N5-000023 and according to the meeting report it was agreed. However, this is not reflected in the TS 29.198

An additional data type called TpCallNotificationType that specifies whether a notification is related to an originating or terminating user, should be added. This data type can then be used within the TpCallEventCriteria and TpCallEventInfo:

2.7.1 Data definition TpCallNotificationType Agreed as it will also solve the mapping.

TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating or the terminating user in the call.

Name
Value
Description

P_ORIGINATING
1
Indicates that the notification is related to the originating user in the call.

P_TERMINATING
2
Indicates that the notification is related to the terminating user in the call.

2.7.2 Data definition TpCallEventInfo

TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a New Call event notification.

Sequence Element Name
Sequence Element Type

DestinationAddress
TpAddress

OriginatingAddress
TpAddress

OriginalDestinationAddress
TpAddress

RedirectingAddress
TpAddress

CallAppInfo
TpCallAppInfoSet

CallEventName
TpCallEventName

CallNotificationType
TpCallNotificationType

2.7.3 Generic Call Control IDL: agreed
//Defines the type of notification.
//Indicates whether it is related to the originating of the terminating user in the call.

enum TpCallNotificationType {

 P_ORIGINATING,
// The notification is related to the originating user in the call.

 P_TERMINATING
// The notification is related to the terminating user in the call.

};

struct TpCallEventInfo {

 TpAddress DestinationAddress;

 TpAddress OriginatingAddress;

 TpAddress OriginalDestinationAddress;

 TpAddress RedirectingAddress;

 TpCallAppInfoSet CallAppInfo;

 TpCallEventName CallEventName;

 TpCallNotificationType CallNotificationType;

};

2.8 Address range:
Note: this was already proposed in Tdoc N5-000023 and according to the meeting report it was agreed. However, this is not reflected in the TS 29.198
A data type specifying an address range should be added in the common data part.

2.8.1 Data definition Address Range

TpAddressRange

This type is identical to TpAddress with the difference that the addrString can contain wildcarts.

Two wildcards are allowed: * which matches zero or more characters and ? which matches exactly one character. The wildcards are only allowed at the end or at the beginning of the addrString.

Some examples for E164 addresses:

· “123”
matches specified number.

· “123*”
matches all numbers starting with 123 (including 123 itself).

· “123??*”
matches all numbers starting with 123 and at least 5 digits long.

· “123???”
matches all numbers starting with 123 and exactly 6 digits long

For e-mail style addresses, the wildcards make more sense at the beginning of the addrString:

· *@3gpp.org
matches all email addresses in the 3gpp.org domain.

The following address ranges are illegal:

· 1?3

· 1*3

· ?123*

2.8.2 Data definition TpCallEventCriteria

This data type can then be used in e.g. the TpCallEventCriteria data-type:

TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for an event notification.

Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested

OriginationAddress
TpAddressRange
Defines the origination address or address range for which the notification is requested

CallEventName
TpCallEventName
Name of the event(s)

CallNotificationType
TpCallNotificationType
Indicates whether it is related to the originating or the terminating user in the call.

2.8.3 Generic IDL

// An TpAddressRange is similar to a TpAddress with the difference that the AddrString can
// contain wildcards (* and ?) at the beginning or the end of the string.
typedef TpAddress TpAddressRange;

2.8.4 Generic Call Control IDL

struct TpCallEventCriteria {

 TpAddressRange DestinationAddress; /*Destination address or address range*/

 TpAddressRange OriginationAddress; /*Origination address or address range */
 TpCallEventName CallEventName; /*Name of the event(s) */

 TpCallNotificationType CallNotificationType; /*Indicates whether the criteria are related to the originating or terminating user in the call */

 };

2.9 Initalising of Additional unions in IDL: Union of STRUCs could also be done at a higher level?
IDL mandates that a union is always initialised when used. In order to enable this a new field should be added to those unions where not all of the values of the discriminator are used (i.e., the 'additional' types; TpCallAdditionalErrorInfo, TpCallAdditionReportInfo and TpCallAdditionalReportCriteria). This default field can be set to a value in case the union is not used, but still should be initialised.

2.9.1 TpCallAdditionalErrorInfo

union TpCallAdditionalErrorInfo switch(TpCallErrorType) {

case P_CALL_ERROR_ROUTING_ABORTED: TpCallReleaseCause CallErrorRoutingAborted;

case P_CALL_ERROR_CALL_ABANDONED: TpCallReleaseCause CallErrorCallAbandoned;

case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;

 default: short Dummy; // allows initialisation of the union in the default case

 };

2.9.2 TpCallAdditionalReportInfo

/* Defines the Tagged Choice of Data Elements that specify additional call report information. */

union TpCallAdditionalReportInfo switch(TpCallReportType) {

case P_CALL_REPORT_BUSY: TpCallReleaseCause RefuseBusy;

case P_CALL_REPORT_DISCONNECT: TpCallReleaseCause CallDisconnect;

case P_CALL_REPORT_REDIRECTED: TpAddress ForwardAddress;

case P_CALL_REPORT_SERVICE_CODE: TpCallReleaseCause ServiceCode;

case P_CALL_REPORT_ROUTING_FAILURE: TpCallReleaseCause RoutingFailure;

case P_CALL_REPORT_CALL_ENDED: TpCallReleaseCause CallEnded;

 default: short Dummy; // allows initialisation of the union in the default case

};

2.9.3 TpCallAdditionalReportCriteria

/* Defines the Tagged Choice of Data Elements that specify specific criteria. */

union TpCallAdditionalReportCriteria switch(TpCallReportType) {

case P_CALL_REPORT_NO_ANSWER: TpDuration NoAnswerDuration;

case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode ServiceCode;

 default: short Dummy; // allows initialisation of the union in the default case

};

2.10 Address information in TpUIEventCriteria and TpUIEventInfo
Note: this was already proposed in Tdoc N5-000023 and according to the meeting report a CR was needed. However, in the current state of the specification a CR is not yet needed.
There is not sufficient information in the TpUIEventCriteria and the TpUIEventInfo. Specifically, the destination address is missing from both data definitions. This is needed, e.g., in case the application wants to deny SMS messages to be sent to a specific address. Also, to be in line with the TpCallEventCriteria address ranges are allowed in the criteria and TpString is changed to TpAddress. Therefore, the following changes should be made to the data definitions:

2.10.1 TpUIEventCriteria

Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification

Structure Element Name
Structure Element Type
Description

OriginatingAddress
TpAddressRange
Defines the originating address or address range for which the notification is requested.

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested.

ServiceCode
TpString
Defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

2.10.2 TpUIEventInfo

Defines the Sequence of Data Elements that specify a UI notification

Structure Element Name
Structure Element Type

OriginatingAddress
TpAddress
Defines the originating address.

DestinationAddress
TpAddress
Defines the destination address.

ServiceCode
TpString
Defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

2.10.3 Generic User Interaction IDL

/* Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification */

struct TpUIEventCriteria {

TpAddressRange OriginatingAddress; /* Address of the end-user for which notification shall be handled */

 TpAddressRange DestinationAddress;

TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */

};

/* Defines the Sequence of Data Elements that specify a UI notification */

struct TpUIEventInfo {

TpAddress OriginatingAddress; /* Address of the end-user for which notification shall be handled */

 TpAddress DestinationAddress;

TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */

};

2.11 Call state Machine

The current Parlay 2.1 STD for the Multi-party Call object (not yet finalised !!) that allows more than 2 parties in a call and application initiated calls looks as follows:

[image: image5.emf]In states:

- No Parties,

- Routing Failed,

- Idle

a timer mechanism should prevent that

the object keeps occupying resources. In

case the timer expires, the object should

be destroyed and callFaultDetected

should be reported to the application.

Active

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

Routing

Failed

routeCallToDestinationReq[number of Req < max allowed number] / increase number of requests

Network

Released

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

No Parties

Application

Released

Idle

release

deassignCall

Routing to

Origination

"network event received that was monitored" ^routeCallToOriginationRes

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

2 .. n Parties in Call

IpMultiPartyCallControlManager.createCall

1 Party in

Call

IpAppCallControlManager.callEventNotify

"requested information ready" ^getCallInfoRes, superviseCallRes

[no reports requested with getCallInfoReq AND superviseCallReq]

Routing to

Destination(s)

"answer from called party"

Routing

Failed

"disconnect from called party"[monitor mode = interrupt]

"answer from called party"

"call ends"

release

deassignCall

"routing aborted or invalid address" / decrease number of requests ^routeCallToDestinationErr

"network event received that was monitored" ^routeCallToDestinationRes

"connection to called party unsuccessful" / decrease number of requests ^routeCallToDestinationRes

"disconnect from called party" ^routeCallToDestinationRes, getCallInfoRes(intermediate report), superviseCallRes

"call supervision event" ^superviseCallRes

"requested information ready" ^getCallInfoRes,

superviseCallRes

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

release

"answer from call party"

^routeCallToOriginationRes

"routing aborted or invalid address"

^routeCallToOriginationErr

"connection to called party unsuccessful"[monitor mode = interrupt]

^routeCallToOriginationRes

routeCallToOriginationReq

release

routeCallToDestinationReq

From this model the 3GPP case can be specialised and will look like:

[image: image6.emf]Network Released

Idle

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

Active

1 Party in

Call

2 Parties in

Call

1 Party in

Call

IpAppCallControlManager.callEventNotify

2 Parties in

Call

setCallChargePlan

getCallInfoReq

superviseCallReq

setAdviceOfCharge

routeCallToDestinationReq

"disconnect from called party"[monitor mode = interrupt]

^routeCallToDestinationRes, getCallInfoRes, superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt]

^routeCallToDestinationRes

"routing aborted or invalid address" ^routeCallToDestinationErr

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

release

"call ends"[monitor for this event] ^routeCallToDestinationRes

"fault detected"[fault can not be commnunicated with network event] ^callFaultDetected

"calling party abandoned"[monitored for any event] ^routeCallToDestinationErr

"call ends"[no monitors]

"calling party abandons"[no monitors] ^callFaultDetected(user abandoned)

"call supervision timer expires" ^superviseCallRes

"network event on passive leg received for which was monitored[

routeCallToDestinationRes]

In state Idle a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object should be destroyed and

callFaultDetected should be reported to

the application.

The only difference with the current model is the merge of the “Incoming” and “Outgoing Setup” state in the “1 Party in Call” state.

2.12 Additional TpUIVariableInfoSet.

Currently it is only possible to send 1 variable information data element in the sendInfoReq and sendInfoAndCollectReq. In case more variable parts can be send an additional TpUIVariableInfoSet needs to be defined and the TpUIVariableInfo parameter in the sendInfoReq and sendInfoAndCollectReq must be replaced with TpUIVariableInfoSet. This requires also modifications in TS23.127.

8.2.4.15 TpUIVariableInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user.

Tag Element Type

TpUIVariablePartType

Tag Element Value
Choice Element Type
Choice Element Name

P_UI_VARIABLE_PART_INT
TpInt32
VariablePartInteger

P_UI_VARIABLE_PART_ADDRESS
TpString
VariablePartAddress

P_UI_VARIABLE_PART_TIME
TpTime
VariablePartTime

P_UI_VARIABLE_PART_DATE
TpDate
VariablePartDate

P_UI_VARIABLE_PART_PRICE
TpPrice
VariablePartPrice

8.2.4.16 TpUIVariableInfoSet

Defines a Numbered Set of Data Elements of TpUIVariableInfo.

_1016270373.doc

IpCall

routeCallToDestinationReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

superviseCallReq()

setAdviceOfCharge()

<<Interface>>

IpCallControlManager

enableCallNotification()

disableCallNotification()

<<Interface>>

IpAppCall

routeCallToDestinationRes()

routeCallToDestinationErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

<<Interface>>

1

1

<<uses>>

IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationInterrupted()

callNotificationContinued()

<<Interface>>

1

1

<<uses>>

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

_1016270465.doc

IpUICall

abortActionReq()

<<Interface>>

IpAppUICall

abortActionRes()

abortActionErr()

<<Interface>>

1

1

<<uses>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpAppUIManager

userInteractionAborted()

userInteractionEventNotify()

userInteractionNotificationInterrupted()

userInteractionNotificationContinued()

<<Interface>>

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<Interface>>

1

1

<<uses>>

IpUIManager

createUI()

createUICall()

enableUINotification()

disableUINotification()

<<Interface>>

1

1

<<uses>>

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

