

N5-000017

3GPP N5 and joint session with S2 OSA

Berlin

5-6 April 2000

Source:

Siemens

Title:

Proposal for further specification of String Parameters

Agenda Item:

Document for:
Discussion

CallControl

TpCallChargePlan
Basis for the analysis are the roles in the Parlay context. We identified three roles:

1. The end user who is subscribing or using a feature offered by a Parlay Client application.

2. The client application acting on behalf of an enterprise operator (a Service Provider). The client application implements value-add services by using the Parlay API. Note that the client application is the technical representation of the legal role enterprise operator; we use both, the client application and the enterprise operator, synonymously in the present discussion.

3. The Parlay Gateway Operator who is acting on behalf of the network operator. The Gateway Operator provides the Parlay API implementation and the network resources used via the Parlay API. The Gateway is technical counterpart of the legal role Gateway Operator.

We identified three scenarios with different flows of money between the roles (figure 1).

[image: image1.wmf]Client

App

GW

Operator

User

inkasso

pays

resource

usage

scenario 1

scenario 2/

scenario 3

Legend

Figure 1: Overview of the different cash flows
Scenario 1: In this scenario the client application is responsible for collecting the charging information on its application server. As a result, the user pays the charged amount directly to the client application provider. The client application is responsible to pay the GW operator for resource usage via the Parlay API. The GW collects charging relevant data for internal use only or for flat rate payment calculation. Possibly, this can be mapped onto network-based charging, too.

Scenario 2: In this scenario, the GW Operator is responsible for the charging of the user (including the collection of the money) but the client defines the tariff. A predefined part of this collected money is then transferred to the client application (or enterprise operator). As a result, the GW must collect charging relevant data for later billing.

Scenario 3: This scenario is a specific inkasso scenario but differs technically from the second scenario. The Gateway Operator negotiates with the application provider a charging table which contains certain tariffs. The relevant information is modeled as table with a name and an entry (row). Both, the table name and the entry pointer (number) are sent by via the API to the Gateway.

What does imply the preceding discussion technically?

For scenario 1, where the client application is responsible for collecting charging relevant data, the following must be fulfilled:

1. The charging in the network (if any) must be disabled if possible. This means, for instance, for the INAP-fixed networks to set the call free of charge. Since the client application must have the complete control on the charging of its provided features, the only source for charging information should be the data collected at the client application server. Note, though, that the gateway should collect charging relevant data for reference and for the billing of the network resource usage (the arrow between the client application and the GW Operator in the figure).

2. As already mentioned, the gateway operator must collect data documenting the resource usage by the client application (via the Parlay API).

3. The client application should, if possible, send setAdviceOfCharge() in order to display the charge at the user's terminal. Note, that this is not possible in all cases, e.g. if money is subtracted and not added.

For scenario 2, where the gateway operator collects the charged money from the end user and the client application defines the charged amount, the following must be fulfilled:

1. The client application must be able to indicate to the gateway the total amount of money the user has to pay (for a call).

2. The client application must be able to indicate to the gateway a money per time ratio as charging basis.

3. The client application must be able to indicate to the gateway a money per volume ratio as charging basis.

4. It is in the responsibility of gateway to perform plausibility checks on the charging data sent by the client application. Too large or to small amounts should lead to an exception.

For scenario 3, the following is needed:

1. The client application must be able to send the name of the charging table and the table entry number of this table. This information is defined by the Gateway Operator.

2. The gateway must be able to implement the charging tables of the gateway operator according to the specific needs of the underlying networks. In certain cases, one can use the network on-line charging (fixed networks), in other cases only off-line charging can be provided (CAMEL networks).

Additionally, for each scenario the application can optionally send a string. This string can contain any additional information and can be used, for instance, for tickets at the gateway or can be written into the CAMEL-FCI for CAMEL off-line charging.

Based on these considerations, we define the parameter TpCallchargePlan as follows (as XML-DTD):

<!ELEMENT ChargeOrder ((ChargeAmount|ChargeAmountPerTime|ChargeAmountPerVolume|NetworkCharging), DescriptiveString?)>

<!-- This is the absolute amount the user is charged -->

<!ELEMENT ChargeAmount (Amount)>

<!ELEMENT ChargeAmountPerTime (Amount, TimeInterval)>

<!ELEMENT ChargeAmountPerVolume (Amount, Volume)>

<!ELEMENT NetworkCharging (ChargingTableName, ChargingTableEntry)>

<!ELEMENT Amount (#PCDATA)>

<!-- The following currency signs are according to ISO-4217 -->

<!ATTLIST Amount Currency (

AED| AFA| ALL| ANG| AON| ARS| ATS| AUD| BBD| BDT| BEF| BGL| BHD| BIF|

BMD| BND| BOB| BRE| BRL| BRR| BSD| BTN| BWP| BZD| CAD| CHF| CLP| CNY|

COP| CRC| CUP| CVE| CYP| CZK| DEM| DJF| DKK| DOP| DZD| ECS| EEK| EGP|

ESP| ETB| EUR| FIM| FJD| FKP| FRF| GBP| GEK| GHC| GIP| GMD| GNF| GNS|

GQE| GRD| GTQ| GWP| GYD| HKD| HNL| HRK| HTG| HUF| IDR| IEP| ILS| INR|

IQD| IRR| ISK| ITL| JMD| JOD| JPY| KES| KGS| KHR| KMP| KPW| KRW| KWD|

KZT| LAK| LBP| LKR| LRD| LSL| LTL| LUF| LVL| LYD| MAD| MDL| MGF| MKD|

MLF| MMK| MNT| MOP| MRO| MTL| MUR| MWK| MXN| MYR| MZM| NAD| NGN| NIC|

NLG| NOK| NPR| NZD| OMR| PAB| PEN| PGK| PHP| PKR| PLN| PTE| PYG| QAR|

ROL| RUR| RWF| SAR| SBD| SCR| SDD| SEK| SGD| SHP| SIT| SKK| SLL| SOS|

SRG| STD| SVC| SYP| SZL| THB| TMM| TND| TOP| TRL| TTD| TWD| TZS| UAK|

UGX| USD| UYU| VEB| VND| VUV| WST| XAF| XCD| XDR| XOF| XPF| YER| YUN|

ZAR| ZMK| ZRN| ZWD) #REQUIRED>

<!ELEMENT Volume (#PCDATA)>

<!ATTLIST Volume VolumeUnits (

 Byte

 |kByte

 |MByte) #REQUIRED>

<!ELEMENT TimeInterval (#PCDATA)>

<!ATTLIST TimeInterval TimeUnits (

 Seconds

 |Minutes

 |Hours) #REQUIRED>

<!ELEMENT ChargingTableName (#PCDATA)>

<!ELEMENT ChargingTableEntry (#PCDATA)>

<!ELEMENT DescriptiveString (#PCDATA)>

Here are some sample XML-files for this DTD:

Example 1:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ChargeOrder SYSTEM "TpCallChargePlan.dtd" >

<ChargeOrder>

 <ChargeAmountPerTime>

 <Amount Currency="DEM"> 0.12 </Amount>

 <TimeInterval TimeUnits="Seconds"> 30 </TimeInterval>

 </ChargeAmountPerTime>

</ChargeOrder>

Example 2:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ChargeOrder SYSTEM "TpCallChargePlan.dtd" >

<ChargeOrder>

 <NetworkCharging>

 <ChargingTableName> ChargingTable for Customer 1 </ChargingTableName>

 <ChargingTableEntry> 27 </ChargingTableEntry>

 </NetworkCharging>

</ChargeOrder>

Example 3:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ChargeOrder SYSTEM "TpCallChargePlan.dtd" >

<ChargeOrder>

 <ChargeAmount>

 <Amount Currency="DEM"> 0.12 </Amount>

 </ChargeAmount>

</ChargeOrder>

Example 4:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ChargeOrder SYSTEM "TpCallChargePlan.dtd" >

<ChargeOrder>

 <ChargeAmountPerVolume>

 <Amount Currency="DEM"> 0.24 </Amount>

 <Volume VolumeUnits="kByte"> 64 </Volume>

 </ChargeAmountPerVolume>

</ChargeOrder>

User Interaction

TpUIEventCriteria

Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification.

Structure Element Name
Structure Element Type

UserAddress
TpAddress

ServiceCode
TpString

UserAddress:
defines the address of the end-user for which notification shall be handled

ServiceCode:
defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

TpUIEventInfo

Defines the Sequence of Data Elements that specify a UI notification

Structure Element Name
Structure Element Type

UserAddress
TpAddress

ServiceCode
TpString

UserAddress:
defines the address of the end-user for which notification shall be handled

ServiceCode:
defines a 2 digit code indicating the UI to be triggered. The value is operator specific

Framework

TpClientAppID (only extended comments)
This is an identifier for the client application. It is used to identify the client to the framework. This data type is identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this string shall be unique for each Parlay API implementation (or unique for a network operators domain). This unique identifier shall be negotiated with the Parlay API operator and the application shall use it to identify itself.

TpEntOpID (only extended comments)
This data type is identical to TpString is defined as a string of characters that identifies an enterprise operator. In conjunction with the application it uniquely identifies the enterprise operator which uses a particular Parlay service (see Service Subscription Framework interface).
TpUniqueServiceNumber (only extended comments)
This data type is identical to a TpString, and is defined as a string of characters that represents a unique number. This string is used to build the service ID (refer to TpServiceID).

TpServiceContractID (only extended comments)
This data type is identical to TpString defined as a string of characters that uniquely identifies a service contract created by an enterprise operator. Refer to Service Subscription Framework service for further information about the creation and usage of service contracts.
TpPassword (only extended comments)
This data type is identical to TpString. Each clientApp object has a clientApp ID, password, and other subscription related client application’s properties stored in it. Refer to Subscription Framework service, interface IpClientAppManagement, method createClientApp() for further information.
TpServicePropertyName (only extended comments)
Describes a valid service property name. The valid service property names are listed in the service data definition.
TpServicePropertyValue (only extended comments)
Describes a valid value of a service property. The valid service property values are given in the service data definition.

TpServiceTypeName (only extended comments)
Describes a valid service type name. unknown which kind of syntactical rules must be observed (these are mentioned in the description of registerService().
TpActivityTestRes

 The string may have the values "Available" or "Unavailable".
_1015144333.doc

Client App

GW Operator

User

inkasso

pays resource usage

scenario 1

scenario 2/ scenario 3

Legend

