3GPP TSG CN WG3 Meeting #31bis
N3-040163

Sophia Antipolis, France, 30th March – 2nd April 2004
Source:
Nokia
Title:
Application level version control in Gq interface
Agenda item:
10.4 QoS1
Document for:
DISCUSSION
1
Introduction

In order to be future-proof a version control mechanism for the Gq interface needs to be considered and mechanism agreed.

In the Diameter base protocol and the NASREQ Diameter application the version control is supported as follows:

· The Diameter base protocol version is included in the Diameter command header. Currently only one version “1” exists. This capability is sufficient for the Gq interface regarding the Diameter base protocol.

· The Diameter application protocol:

· Version is implied by the Application identifier. Thus, there is no explicit means in the Diameter base protocol or in the NASREQ application to indicate the application version, but it is assumed that when a new version is required a new application id is acquired for the application.

· Another solution is to define an application specific mechanism and add it to the application protocol. This can be on application, command, or AVP level.

Note 1: Optional AVPs and optional commands do not require an new version. They can be added to the application protocol without requiring change of version as according to the Diameter base protocol an unknown optional AVP is discarded, but the rest of the command is executed. An unknown command is rejected but otherwise the service is continued.

Note 2: According to the Diameter base protocol CER/CEA messages can be used to negotiate support for different application ids but this message do not also contain any other version control. Note also that, this negotiation is not end-to-end but only between two adjacent nodes, and thus, if any agents (proxy, relay, etc.) are located between the PDF and the AF, then the application id support is not conveyed end-to-end.

CN4, which also has used Diameter over several interfaces and is considering it as a likely candidate for several new ones (refer N4-031109), has considered several methods for version control. These methods are presented in this contribution. However, it should be noted that the CN4 use for Diameter is somewhat different. For example, they envision that different sets of CN4 defined Diameter application messages are used over specific interfaces. In addition, their interfaces are 1 – 1, e.g. from HSS to I-CSCF, and not N – N as is likely to be the case later on with the Gq interface; thus, the need for agent nets (similar to GPRS net GRX) is not as evident as in our case. The differences between the Gq and the CN4 Diameter interfaces make some of the CN4 proposed solutions not such good candidates for Gq interface purposes.

In addition to presenting the different solutions for Gq interface version control purposes, this contribution proposes the solution to be used for the interface.

2 The level of versioning and version negotiation

The following solutions are proposed in CN4 contribution N4-030830, but due to the differences in the Gq and the CN4 interfaces, the text is somewhat modified.

2.1
Application level

The version control method can be used for the application level so that one version of the entire application is covered by one version. Thus, all the commands and AVPs of the application are implicitly defined by that value. This also means, that partial implementation of the protocol is only possible for the optional functionality (commands and AVPs), but all mandatory commands and AVPs need to be supported by both the PDF and the AF.

2.1.1 Version information in Application Identifier

The Application Identifier can be used for application level version control. If used, it means that a new application identifier is acquired from IANA when a new version of the application is created. A new application id could be acquired for each release or on-need-basis. The on-need-basis solution have the advantage of maximizing interoperability, as it may be that all nodes do not support the newer version. If on-need-basis method is used, optional amendments (AVPs and commands) can be added to the application without needing to change the application identifier. If a node receives an optional AVP or command, according to the Diameter base protocol, it can discard or reject it, respectively, but the service can otherwise continue. (According to the Diameter base protocol, a mandatory AVP cannot be discarded but the entire message needs to be rejected).

The application identifier is exchanged as part of the capability exchange (CER/CEA commands) but this is carried out on each interface (two adjacent nodes) independently of other interfaces, and thus if agents are used it is not between the PDF and AF in case of Gq. Thus, the application version support needs to be preconfigured in the peer node (PDF, AF) or then the receiving side can deduce it from the first request received from the peer node, and react based on this (either reply or reject the command if it does not support the application identifier indicated).

2.1.2
Version information in version AVP

The version of the application can also be identified by a specific version AVP. The version AVPs in CER/CEA would be used for version negotiation. The data structure in the command should contain all the versions supported for each application, for example:

Supported-Auth-Application-Version ::= < AVP Header: TBD >

 { Auth-Application-Id }

 1* { Version }

 * [AVP]
Version AVP would also be present in all request and answer messages to enable support for multiple versions at the same time. This ensures that the information is passed end-to-end (from PDF to AF, and vice versa) in the Gq interface.
2.2
Command pair level

If the version control is done in the command pair level, each command pair has shared version identification. It should be required that the answer message have the same version as the corresponding request message. If the version of the received request does not match with the supported versions agreed during CER/CEA procedure, an error response is sent back to the sender. The receiver ignores an answer message with an erroneous version.

The implicit version of the application would be the combination of the versions of the command pairs the application supports. The version of an AVP would implicitly be the version of the command it belongs to. If the version control is defined in this level, it is possible to implement only a part of the commands of the protocols or implement the new command versions gradually.

This method is fairly complicated and not so useful for Gq interface as it is for the CN4 interfaces as in order for the Gq interface to function properly, all the commands need to be supported by both the PDF and the AF. This is not the case for CN4 interfaces as they use and plan to use in the future subsets of commands over certain interfaces, see N4-031109.

2.2.1
Version information in command-code

In this solution the version of the command is identified by the command code. A new command-code must be allocated for each new version of the command. The version information in CER/CEA would contain all supported commands for each application, for example

Supported-Command-Codes ::= < AVP Header: TBD >

1* { Command-Code }

 * [AVP]

The receiver of the CEA should be mandated to select the most recent version of the commonly supported versions to be taken into use when communicating with the sender of the CEA.

This method would be quite complicated, as the creation of a new command-code requires IETF Consensus, as defined in Diameter Base Protocol. There is a risk that getting a new command-code for each version would take a long time and be also otherwise problematic. This version control mechanism is inflexible for the needs of protocols like Gq interface (as well as for CN4 interfaces, as stated in N4-030830 as CN4’s Cx and Sh are planned to evolve from release to release to allow the enhancements of the IMS).

The CN4 has some unallocated command code values, but they are unlikely to be sufficient for Gq interface purposes. In addition, it is unlikely that CN4 would be willing to give these values and reserve quite a few of them for CN3 version control purposes.

In addition, it is not so clear if supporting some same commands can really be seen as making the entire functionality. What if three of the commands are supported by both but one is not? This one could be crucial for the functionality and thus supporting some number but not all is not sufficient for Gq interface purposes. Then, if at some point we will only need a subset of some of the Gq interface commands, then we need to consider that scenario, but at this point we do not have such needs, and we cannot accept partial implementation of commands or the Gq interface functionality will not be fulfilled.

2.2.2
Version information in version AVP

The version of the command is identified by the version AVP. The version information in CER/CEA would contain all supported commands and versions for each command pair, for example

Supported-Commands ::= < AVP Header: TBD >

1* { Supported-Command-Version }

 * [AVP]

Supported-Command-Version ::= < AVP Header: TBD >

 { Command-Code }

1* { Version }

 * [AVP]
Version AVP would also be present in all request and answer messages to enable support for multiple versions at the same time.

Again, if agents are used in the Gq interface, the CER/CEA negotiation does not take place between the PDF and the AF in our CN3 use case.

This method is not so useful for the Gq interface purposes; see 2.2.1 Version information in command-code.

2.3
AVP level

If the versioning would be done on the AVP level, the version of the command would implicitly be the combination of the supported AVPs and the implicit version of the application would be the combination of all implicit versions of the supported commands. The versioning of the AVP could be done by changing relevant AVPs to grouped and adding a new AVP to indicate the version of the grouped AVP. In CER/CEA the version negotiation could be done by listing for each supported command the supported combinations of the AVP

versions, for example

Supported-AVPs ::= < AVP Header: TBD >

1* { Supported-AVPs-in-Command }

 * [AVP]

Supported-AVPs-in-Command ::= < AVP Header: TBD >

 { Command-Code }

1* { Supported-AVP-Version }

 * [AVP]

Supported-AVP-Version ::= < AVP Header: TBD >

 { AVP-Code }

1* { Version }

 * [AVP]
If the version control is defined in this level, it is possible to implement the protocol and it’s features partially. However, the structure of the messages, AVPs, and version negotiation would be complex and it is questionable if the level of flexibility provided by this solution is practical at all.

2.4
“Node Type Identifier” AVP

In CN4 the “Node Type Identifier” AVP has been proposed to be used. In this method they would re-use rel-5 Cx Application Identifier in the new 3GPP applications and include a new “Node Type Identifier” into the CER/CEA commands to separate the different commands and node behaviour related to different applications.

However this mechanism has some major drawbacks, which will bring too much extra complexity compared to the native application identifier based solution.

· Because the “Node Type Identifier” AVP is not transferred in every command, it is required to connect the node type to Host Identity and it has to be stored into Diameter routing tables. This will require changes to Diameter base protocol functions.

· When receiving a command the Diameter entity has to first find out, based on the origin host and application identifier, the node type in order to get known which logic/rules apply to the particular command. This is more complicated compared to the simple comparison of application identifier.

· The solution is not future proof, if a single node may support several interfaces. Then the node type doesn’t tell to which application the command is related, if the application identifier is the same.

3 Backward compatibility considerations

The backward compatibility with each of these solutions is a bit different, however, the main issue is that if a particular node does not support a newer version of the application, command, or AVP, then interoperability is not possible.

The version control number should be kept the same for as long as wisely possible and new amendments should be done as optional commands and AVPs to ensure interoperability. However, if mandatory amendments need to be made then there is no backward compatibility, but the node supporting the new application id should then also support the old version in order to have backward compatibility.

4 Proposal

Nokia proposes to decide the version control issue before the Gq interface drafting for Rel-6 is completed in order to ensure that we have as simple and backward compatible solution as possible to ensure interworking with different nodes as well as possible.

We also feel that the solution presented in chapter 2.1.1 Version information in Application Identifier (or in 2.1.2 Version information in version AVP) is the simplest one and is an especially good candidate to be considered as the mechanism for Gq interface version control.

CN4 has not made a final solution and we could wait for the CN3 meeting in May to see if the same solution could be selected for both CN3 and CN4.

