3GPP TSG-CN1 Meeting #33
Tdoc N1-040281
Atlanta, Georgia, USA 16 – 20 February 2004
Source:
Lucent Technologies

Title:
An analysis of the requirements of the Accept-Contact header

Agenda item:
8.4.6

Document for:
INFORMATION

1
Introduction

This contribution analyses the requirements of the Accept-Contact header with a view to completing the Annex A tables within 3GPP TS 24.229.

The conclusions of this contribution are implemented in an associated CR.

2
Requirements from IETF specifications

There is only one SIP specification that identifies the Accept-Contact header. No working group internet drafts add further specification to the Accept-Contact header.

2.1
Caller Preferences for the Session Initiation Protocol (SIP) (draft-ietf-sip-callerprefs-10)

Abstract specifies:

This document describes a set of extensions to the Session Initiation Protocol (SIP) which allow a caller to express preferences about request handling in servers. These preferences include the ability to select which Uniform Resource Identifiers (URI) a request gets routed to, and to specify certain request handling directives in proxies and redirect servers. It does so by defining three new request header fields, Accept-Contact, Reject-Contact, and Request-Disposition, which specify the caller's preferences.

Clause 1 (Introduction), 4th paragraph specifies:

This extension allows the caller to have these preferences met. It does so by specifying mechanisms by which a caller can provide preferences on processing of a request. There are two types of preferences. One of them, called request handling preferences, are encapsulated in the Request-Disposition header field. They provide specific request handling directives for a server. The other, called feature preferences, are present in the Accept-Contact and Reject-Contact header fields. They allow the caller to provide a feature set [2] that expresses its preferences on the characteristics of the UA that is to be reached. These are matched with a feature sets provided by a UA to its registrar [3]. The extension is very general purpose, and not tied to a particular service. Rather, it is a tool that can be used in the development of many services.

Clause 3 (Definitions) specifies:

Feature Preferences: Caller preferences that describe desired properties of a UA that the request is to be routed to. Feature preferences can be made explicitly with the Accept-Contact and Reject-Contact header fields.

Explicit Preference: A caller preference indicated explicitly in the Accept-Contact or Reject-Contact header fields.

Clause 4 (Overview of Operation), 2nd paragraph specifies:

The second category of preferences, called feature preferences, are carried in the Accept-Contact and Reject-Contact header fields. These header fields contain feature sets, represented by the same feature parameters that are used to indicate capabilities [3]. Here, the feature parameters represent the caller's preferences. The Accept-Contact header field contains feature sets that describe UAs that the caller would like to reach. The Reject-Contact header field contains feature sets which, if matched by a UA, imply that the request should not be routed to that UA.

Proxies use the information in the Accept-Contact and Reject-Contact header fields to select amongst contacts in their target set. When neither of those header fields are present, the proxy computes implicit preferences from the request. These are caller preferences that are not explicitly placed into the request, but can be inferred from the presence of other message components. As an example, if the request method is INVITE, this is an implicit preference to route the call to a UA that supports the INVITE method.

Clause 5 (UAC behaviour), 1st and 2nd paragraphs specify:

A caller wishing to express preferences for a request includes Accept-Contact, Reject-Contact or Request-Disposition header fields in the request, depending on their particular preferences. No additional behavior is required after the request is sent.

The Accept-Contact, Reject-Contact and Request-Disposition header fields in an ACK for a non-2xx final response, or in a CANCEL request, MUST be equal to the values in the original request being acknowledged or cancelled. This is to ensure proper operation through stateless proxies.

Subclause 5.2 specifies:

5.2 Feature Set Preferences

A UAC can indicate caller preferences for the capabilities of a UA that should be reached or not reached as a result of sending a SIP request. To do that, it adds one or more Accept-Contact and Reject-Contact header field values. Each header field value contains a set of feature parameters that define a feature set. The syntax of the header field can be found in Section 10, and a discussion of their usage in Section 9.2.

Each feature set is constructed as described in Section 5 of [3]. The feature sets placed into these header fields MAY overlap; that is, a UA MAY indicate preferences for feature sets that match according to the matching algorithm of RFC 2533 [2].

A UAC can express explicit preferences for the methods and event packages supported by a UA. It is RECOMMENDED that a UA include a term in an Accept-Contact feature set with the "sip.methods" feature tag (note, however, that even though the name of this feature tag is sip.methods, it would be encoded into the Accept-Contact header field as just "methods"), whose value includes the method of the request. When a UA sends a SUBSCRIBE request, it is RECOMMENDED that a UA include a term in an Accept-Contact feature set with the "sip.events" feature tag, whose value includes the event package of the request. Whether these terms are placed into a new feature set, or whether they are included in each feature set, is at the discretion of the implementor. In most cases, the right effect is achieved by including a term in each feature set.

As an example, the following Accept-Contact header field expresses a desire to route a call to a mobile device:

Accept-Contact: *;mobility="mobile";methods="INVITE"

The Reject-Contact header field allows the UAC to specify that a UA should not be contacted if it matches any of the values of the header field. Each value of the Reject-Contact header field contains a "*", purely to align the syntax with guidelines for SIP extensions [12], and is parameterized by a set of feature parameters. Any UA whose capabilities match the feature set described by the feature parameters matches the value.

The Accept-Contact header field allows the UAC to specify that a UA should be contacted if it matches some or all of the values of the header field. Each value of the Accept-Contact header field contains a "*" and is parameterized by a set of feature parameters. Any UA whose capabilities match the feature set described by the feature parameters matches the value. The precise behavior depends heavily on whether the "require" and "explicit" feature parameters are present. When both of them are present, a proxy will only forward the request to contacts which have explicitly indicated that they support the desired feature set. Any others are discarded. As such, a UAC should only use "require" and "explicit" together when it wishes the call to fail unless a contact definitively matches. It's possible that a UA supports a desired feature, but did not indicate it in its registration. When a UAC uses both "explicit" and "require", such a contact would not be reached. As a result, this combination is often not the one a UAC will want.

When only "require" is present, it means that a contact will not be used if it doesn't match. If it does match, or if its not known whether its a complete match, the contact is still used. A UAC would use "require" alone when a non-matching contact is useless. This is common for services where the request simply can't be serviced without the neccesary features. An example is support for specific methods or event packages. When only "require" is present, the proxy will also preferentially route the request to the UA which represents the "best" match. Here, "best" means that the UA has explicitly indicated it supports more of the desired features than any other. Note, however, that this preferential routing will never override an ordering providing by the called party. The preferential routing will only choose amongst contacts of equal q-value.

When only "explicit" is present, it means that all contacts provided by the callee will be used. However, if the contact isn't an explicit match, it is tried last amongst all other contacts with the same q-value. The principle difference, therefore, between this configuration and the usage of both "require" and "explicit" is the fallback behavior for contacts that don't match explicitly. Here, they are tried as a last resort. If "require" is also present, they are never tried.

Finally, if neither "require" nor "explicit" are present, it means that all contacts provided by the callee will be used. However, if the contact doesn't match, it is tried last amongst all other contacts with the same q-value. If it does match, the request is routed preferentially to the "best" match. This is a common configuration for preferences that, if not honored, will still allow for a successful call, and the greater the match, the better.

Clause 7 specifies:

7. Proxy Behavior

Proxy behavior consists of two orthogonal sets of rules - one for processing the Request-Disposition header field, and one for processing the URI and feature set preferences in the Accept-Contact and Reject-Contact header fields.

In addition to processing these headers, a proxy MAY add one if not present, or add a value to an existing header field, as if it were a UAC. This is useful for a proxy to request processing in downstream proxies in the implementation of a feature. However a proxy MUST NOT modify or remove an existing header field value. This is particularly important when S/MIME is used. The message signature could include the caller preferences header fields, allowing the UAS to verify that, even though proxies may have added header fields, the original caller preferences were still present.

Clause 7.2.1 specifies:

7.2.1 Extracting Explicit Preferences

The first step in proxy processing is to extract explicit preferences. To do that, it looks for the Accept-Contact and Reject-Contact header fields.

For each value of those header fields, it extracts the feature parameters. These are the header field parameters whose name is one of the base-tags, or whose name begins with a plus (+) [3]. The proxy converts all of those parameters to the syntax of RFC 2533, based on the rules in Section 8.

The result will be a set of feature set predicates in conjunctive normal form, each of which is associated with one of the two preference header fields. If there was a req-parameter associated with a header field value in the Accept-Contact header field, the feature set predicate derived from that header field value is said to have its require flag set. Similarly, if there was an explicit-param associated with a header field value in the Accept-Contact header field, the feature set predicate derived from that header field value is said to have its explicit flag set.

Clause 7.2.2 specifies:

7.2.2 Extracting Implicit Preferences

If, and only if, the proxy did not find any explicit preferences in the request (because there was no Accept-Contact or Reject-Contact header field), the proxy extracts implicit preferences. These preferences are ones implied by the presence of other information in the request.

First, the proxy creates a conjunction with no terms. This conjunction represents a feature set that will be associated with the Accept-Contact header field, as if it were included there. Note that there is no modification of the message implied - only an association for the purposes of processing. Furthermore, this feature set has its require flag set, but not its explicit flag.

The proxy then adds terms to the conjunction for the two implicit preference types below.

Clause 7.2.4 (Matching), 5th, 6th, 7th and 8th paragraphs specify:

Next, the proxy applies the predicates associated with the Accept-Contact header field. For each contact that remains in the target set, the proxy constructs a matching set, Ms. Initially, this set contains all of the Accept-Contact predicates. Each of those predicates is examined. It is matched to the contact predicate using the matching operation of RFC 2533 [2]. If the result is not a match, and the Accept-Contact predicate had its require flag set, the URI corresponding to that contact predicate is discarded from the target set. If the result is not a match, but the Accept-Contact predicate did not have its require flag set, that contact URI is not discarded from the target set, however, the Accept-Contact predicate is removed from the matching set for that contact.

For each contact that remains in the target set, the proxy computes a score for that contact against each predicate in the contact's matching set. Let the number of terms in the Accept-Contact predicate conjunction be equal to N. Each term in that predicate contains a single feature tag. If the contact predicate has a term containing that same feature tag, the score is incremented by 1/N. If the feature tag was not present in the contact predicate, the score remains unchanged. Based on these rules, the score can range between zero and one.

The require and explicit tags are then applied, resulting in potential modification of the score and the target set. This process is summarized in Figure 7. If the score for the contact predicate against that Accept-Contact predicate was less than one, and the Accept-Contact predicate had an explicit tag, if the predicate also had a require tag, the Contact URI corresponding to that contact predicate is dropped. If, however, the predicate did not have a require tag, the score is set to zero. If there was no explicit tag, the score is unchanged.

The next step is to combine the scores and the q-values associated with the predicates in the matching set, to arrive at an overall caller preference, Qa. For those URIs in the target set which remain, there will be a score which indicates its match against each Accept-Contact predicate in the matching set. If there are M Accept-Contact predicates in the matching set, there will be M scores S1 through SM, for each contact. The overall caller preference, Qa, is the arithmetic average of S1 through SM.

Clause 7.2.5 specifies:

7.2.5 Example

Consider the following example, which is contrived but illustrative of the various components of the matching process. There are five registered Contacts for sip:user@example.com. They are:

Contact: sip:u1@h.example.com;audio;video;methods="INVITE,BYE";q=0.2

Contact: sip:u2@h.example.com;audio="FALSE"; methods="INVITE";actor="msg-taker";q=0.2

Contact: sip:u3@h.example.com;audio;actor="msg-taker"; methods="INVITE";video;q=0.3

Contact: sip:u4@h.example.com;audio;methods="INVITE,OPTIONS";q=0.2

Contact: sip:u5@h.example.com;q=0.5

An INVITE sent to sip:user@example.com contained the following caller preferences header fields:

Reject-Contact: *;actor="msg-taker";video

Accept-Contact: *;audio;require

Accept-Contact: *;video;explicit

Accept-Contact: *;methods="BYE";class="business";q=1.0

There are no implicit preferences in this example, because explicit preferences are provided.

The proxy first removes u5 from the target set, since it is immune from caller preferences processing.

Next, the proxy processes the Reject-Contact header field. It is a match for all four remaining contacts, but only an explicit match for u3. Thats because u3 is the only one that explicitly indicated support for video, and explicitly indicated it is a message taker. So, u3 gets discarded, and the others remain.

Next, each of the remaining three contacts is compared against each of the three Accept-Contact predicates. u1 is a match to all three, earning a score of 1.0 for the first two predicates, and 0.5 for the third (the methods feature tag was present in the contact predicate, but the class tag was not). u2 doesn't match the first predicate. Because that predicate has a require tag, u2 is discarded. u4 matches the first predicate, earning a score of 1.0. u4 does match the second predicate, but since the match is not explicit (the score is 0.0, in fact), the score is set to zero (it was already zero, so nothing changes). u4 does not match the third predicate.

At this point, u1 and u4 remain. u1 matched all three Accept-Contact predicates, so that its matching set contains all three, with scores of 1, 1, and 0.5. u4 matches the first two predicates, with scores of 1.0 and 0.0. Qa for u1 is 0.83 and Qa for u4 is 0.5. u5 is added back in with a Qa of 1.0.

Next, the remaining contacts in the target set are sorted by q-value. u5 has a value of 0.5, u1 has a q-value of 0.2 and so does u4. There are two equivalnce classes. The first has a q-value of 0.5, and consists of just u5. Since there is only one member of the class, sorting within the class has no impact. The second equivalence class as a q-value of 0.2. Within that class, the two contacts, u1 and u4, are ordered based on their values of Qa. u1 has a Qa of 0.83, and u4, a Qa of 0.5. Thus, u1 comes first, followed by u4. The resulting overall ordered set of contacts in the target set is u5, u1 and then u4.

Clause 8 (Mapping Feature Parameters to a Predicate), 10th and 11th paragraphs specify:

Feature tags, as specified in RFC 2506, cannot be directly represented as header field parameters in the Contact, Accept-Contact and Reject-Contact header fields. This is due to an inconsistency in the grammars, and in the need to differentiate feature parameters from parameters used by other extensions. As such, feature tag values are encoded from RFC 2506 format to yield an enc-feature-tag, and then are decoded into RFC 2506 format. The decoding process is simple. If there is a leading plus (+) sign, it is removed. Any exclamation point (!) is converted to a colon (:) and any single quote (') is converted to a forward slash (/). If there was no leading plus sign, and the remainder of the encoded name was "automata", "class", "duplex", "mobility", "description", "events", "priority", "methods", "schemes", "isfocus" or "actor", the prefix "sip." is added to remainder of the encoded name to compute the feature tag name.

As an example, the Accept-Contact header:

Accept-Contact:*;mobility="fixed";events="!presence,winfo";language="en,de";description="<PC>";

+sip.newparam;+rangeparam="#-4:+5.125"

would be converted to the following feature predicate:

(& (sip.mobility=fixed)

(| (! (sip.events=presence)) (sip.events=winfo))

(| (language=en) (language=de))

(sip.description="PC")

(sip.newparam=TRUE)

(rangeparam=-4..5125/1000))

Clause 9 specifies:

9. Header Field Definitions

This specification defines three new header fields - Accept-Contact, Reject-Contact, and Request-Disposition.

Figure 17 and Figure 18 are an extension of Tables 2 and 3 in RFC 3261 [1] for the Accept-Contact, Reject-Contact and Request-Disposition header fields. The column "INF" is for the INFO method [6], "PRA" is for the PRACK method [7], "UPD" is for the UPDATE method [8], "SUB" is for the SUBSCRIBE method [5], "NOT" is for the NOTIFY method [5], "MSG" is for the MESSAGE method [9], and "REF" is for the REFER method [10].

 Header field where proxy ACK BYE CAN INV OPT REG

 Accept-Contact R ar o o o o o -

 Reject-Contact R ar o o o o o -

 Request-Disposition R ar o o o o o o

Figure 17: Accept-Contact, Reject-Contact and Request-Disposition header fields

 Header field where proxy PRA UPD SUB NOT INF MSG REF

 Accept-Contact R ar o o o o o o o

 Reject-Contact R ar o o o o o o o

 Request-Disposition R ar o o o o o o o

Figure 18: Accept-Contact, Reject-Contact and Request-Disposition header fields

Clause 9.2 specifies:

9.2 Accept-Contact and Reject-Contact Header Fields

The syntax for these header fields is described in Section 10. A compact form, with the letter a, has been defined for the Accept-Contact header field, and with the letter j for the Reject-Contact header field.

Clause 10 (Augmented BNF specifies):

The BNF for the Accept-Contact and Reject-Contact header fields is:

Accept-Contact

= ("Accept-Contact" / "a") HCOLON ac-value *(COMMA ac-value)

Reject-Contact

= ("Reject-Contact" / "j") HCOLON rc-value *(COMMA rc-value)

ac-value

= "*" *(SEMI ac-params)

rc-value

= "*" *(SEMI rc-params)

ac-params

= feature-param / req-param / explicit-param / generic-param;;

feature param from RFC XXXX;;generic-param from RFC 3261

rc-params

= feature-param / generic-param

req-param

= "require"

explicit-param

= "explicit"

Despite the BNF, there MUST NOT be more than one req-param or explicit-param in an acrc-params. Furthermore, there can only be one instance of any feature tag in feature-param.

Clause 12 (IANA considerations) specifies:

The following is the registration for the Accept-Contact header field:

RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number of this specification.]

Header Field Name: Accept-Contact

Compact Form: a

The following is the registration for the Reject-Contact header field:

RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number of this specification.]

Header Field Name: Reject-Contact

Compact Form: j

3
Requirements summary

3.1
IETF requirements

See the discussion in relation to support of the extension in N1-040283.

Where the "Caller Preferences for the Session Initiation Protocol (SIP)" extension is supported, the Accept-Contact header is allowed in all requests, except the REGISTER request. It is optional for clients to include the header in requests, and mandatory for a supporting proxy to understand such received headers in requests, except the REGISTER request. There are no requirements for support in UAS.

Due to the following text in callerprefs

Both request handling and feature preferences can appear in any request, not just INVITE. However, they are only useful in requests where proxies need to determine a request target. If the domain in the request URI is not owned by any proxies along the request path, those proxies will never access a location service, and therefore, never have the opportunity to apply the caller preferences. This makes sense; typically, the request URI will identify a UAS for mid-dialog requests. In those cases, the routing decisions were already made on the initial request, and it makes no sense to redo them for subsequent requests in the dialog.

It is apparent that receiving proxies will only do sensible things with a request if it is routeing that request, thus any method that only applies to subsequent requests in a dialog becomes irrelevant.

Support of each and every individual feature tag is optional. As caller preferences does not define these feature tags, they cannot be enumerated by reference to the caller preferences extension.

3.2
3GPP requirements

As the only proxy entity that looks at the Contact header is the S-CSCF, then this is the only entity that reception is mandatory, for those requests where such an inspection has applicability (initial requests and standalone requests). There an extra conditional is added for reception in such cases.

This S-CSCF requirement is best dealt with at the PDU level.

4
Conclusion

This document is submitted to 3GPP WG CN1 for information in support of the associated CR contained in N1-040284.

