3GPP TSG-CN1 Meeting #27
Tdoc N1-022335

Bangkok, Thailand, 11 – 15 November 2002
Source:
Lucent Technologies

Title:
An analysis of the requirements for the Expires header

Agenda item:
7.07

Document for:
DISCUSSION

Introduction

This contribution analyses the requirements of the Expires header with a view to completing the Annex A tables within 3GPP TS 24.229.

The conclusions of this contribution are implemented in an associated CR.

Requirements from IETF drafts

Requirements from RFC 3261 (SIP: Session Initiation Protocol)

Clause 8.3 (General User Agent Behavior - Redirect Servers) 10th paragraph specifies:

The "expires" parameter of a Contact header field value indicates how long the URI is valid. The value of the parameter is a number indicating seconds. If this parameter is not provided, the value of the Expires header field determines how long the URI is valid. Malformed values SHOULD be treated as equivalent to 3600.

Clause 10.2.1.1 (Registrations - Constructing the REGISTER Request - Adding Bindings - Setting the Expiration Interval of Contact Addresses) 2nd paragraph specifies:

There are two ways in which a client can suggest an expiration interval for a binding: through an Expires header field or an "expires" Contact header parameter. The latter allows expiration intervals to be suggested on a per-binding basis when more than one binding is given in a single REGISTER request, whereas the former suggests an expiration interval for all Contact header field values that do not contain the "expires" parameter.

Clause 10.2.2 (Registrations - Constructing the REGISTER Request - Removing Bindings) 2nd paragraph specifies:

The REGISTER-specific Contact header field value of "*" applies to all registrations, but it MUST NOT be used unless the Expires header field is present with a value of "0".

Use of the "*" Contact header field value allows a registering UA to remove all bindings associated with an address-of-record without knowing their precise values.

Clause 10.2.4 (Registrations - Constructing the REGISTER Request - Refreshing Bindings) 2nd paragraph specifies:

The 200 (OK) response from the registrar contains a list of Contact fields enumerating all current bindings. The UA compares each contact address to see if it created the contact address, using comparison rules in Section 19.1.4. If so, it updates the expiration time interval according to the expires parameter or, if absent, the Expires field value. The UA then issues a REGISTER request for each of its bindings before the expiration interval has elapsed. It MAY combine several updates into one REGISTER request.

Clause 10.3 (Registrations - Processing REGISTER Requests) 5th paragraph, item 7 specifies:

7.
The registrar now processes each contact address in the Contact header field in turn. For each address, it determines the expiration interval as follows:

-
If the field value has an "expires" parameter, that value MUST be taken as the requested expiration.

-
If there is no such parameter, but the request has an Expires header field, that value MUST be taken as the requested expiration.

-
If there is neither, a locally-configured default value MUST be taken as the requested expiration.

The registrar MAY choose an expiration less than the requested expiration interval. If and only if the requested expiration interval is greater than zero AND smaller than one hour AND less than a registrar-configured minimum, the registrar MAY reject the registration with a response of 423 (Interval Too Brief). This response MUST contain a Min-Expires header field that states the minimum expiration interval the registrar is willing to honor. It then skips the remaining steps.

Allowing the registrar to set the registration interval protects it against excessively frequent registration refreshes while limiting the state that it needs to maintain and decreasing the likelihood of registrations going stale. The expiration interval of a registration is frequently used in the creation of services. An example is a follow-me service, where the user may only be available at a terminal for a brief period. Therefore, registrars should accept brief registrations; a request should only be rejected if the interval is so short that the refreshes would degrade registrar performance.

For each address, the registrar then searches the list of current bindings using the URI comparison rules. If the binding does not exist, it is tentatively added. If the binding does exist, the registrar checks the Call-ID value. If the Call-ID value in the existing binding differs from the Call-ID value in the request, the binding MUST be removed if the expiration time is zero and updated otherwise. If they are the same, the registrar compares the CSeq value. If the value is higher than that of the existing binding, it MUST update or remove the binding as above. If not, the update MUST be aborted and the request fails.

This algorithm ensures that out-of-order requests from the same UA are ignored.

Each binding record records the Call-ID and CSeq values from the request.

The binding updates MUST be committed (that is, made visible to the proxy or redirect server) if and only if all binding updates and additions succeed. If any one of them fails (for example, because the back-end database commit failed), the request MUST fail with a 500 (Server Error) response and all tentative binding updates MUST be removed.

Clause 13.2.1 (Querying for capabilities - UAC Processing - Creating the Initial INVITE) 5th paragraph specifies:

The UAC MAY add an Expires header field (Section 20.19) to limit the validity of the invitation. If the time indicated in the Expires header field is reached and no final answer for the INVITE has been received, the UAC core SHOULD generate a CANCEL request for the INVITE, as per Section 9.

Clause 13.3.1 (Querying for capabilities - UAS Processing - Processing of the INVITE), 2nd paragraph, item 1 specifies:

1.
If the request is an INVITE that contains an Expires header field, the UAS core sets a timer for the number of seconds indicated in the header field value. When the timer fires, the invitation is considered to be expired. If the invitation expires before the UAS has generated a final response, a 487 (Request Terminated) response SHOULD be generated.

Clause 16.10 (Proxy Behavior - CANCEL Processing) 2nd paragraph specifies:

A stateful proxy MAY generate CANCEL requests for pending INVITE client transactions based on the period specified in the INVITE's Expires header field elapsing. However, this is generally unnecessary since the endpoints involved will take care of signalling the end of the transaction.

Clause 20 (Header fields) table 2 specifies:

 Header field where proxy ACK BYE CAN INV OPT REG

 Expires - - - o - o

Clause 20.19 specifies:

20.19 Expires

The Expires header field gives the relative time after which the message (or content) expires.

The precise meaning of this is method dependent.

The expiration time in an INVITE does not affect the duration of the actual session that may result from the invitation. Session description protocols may offer the ability to express time limits on the session duration, however.

The value of this field is an integral number of seconds (in decimal) between 0 and (2**32)-1, measured from the receipt of the request.

Example:

Expires: 5

Clause 21.3.3 specifies:

21.3.3 302 Moved Temporarily

The requesting client SHOULD retry the request at the new address(es) given by the Contact header field (Section 20.10). The Request-URI of the new request uses the value of the Contact header field in the response.

The duration of the validity of the Contact URI can be indicated through an Expires (Section 20.19) header field or an expires parameter in the Contact header field. Both proxies and UAs MAY cache this URI for the duration of the expiration time. If there is no explicit expiration time, the address is only valid once for recursing, and MUST NOT be cached for future transactions.

If the URI cached from the Contact header field fails, the Request-URI from the redirected request MAY be tried again a single time.

The temporary URI may have become out-of-date sooner than the expiration time, and a new temporary URI may be available.

Clause 21.5.5 specifies:

21.5.5 504 Server Time-out

The server did not receive a timely response from an external server it accessed in attempting to process the request. 408 (Request Timeout) should be used instead if there was no response within the period specified in the Expires header field from the upstream server.

Clause 23.4.1.2 (S/MIME - SIP Header Privacy and Integrity using S/MIME: Tunneling SIP - Integrity and Confidentiality Properties of SIP Headers - Confidentiality) 4th paragraph specifies:

Primarily, a user agent will want to encrypt header fields that have an end-to-end semantic, including: Subject, Reply-To, Organization, Accept, Accept-Encoding, Accept-Language, Alert-Info, Error-Info, Authentication-Info, Expires, In-Reply-To, Require, Supported, Unsupported, Retry-After, User-Agent, Server, and Warning. If any of these header fields are present in an encrypted body, they should be used instead of any "outer" header fields, whether this entails displaying the header field values to users or setting internal states in the UA. They SHOULD NOT however be used in the "outer" headers of any future messages.

Clause 23.4.1.2 (S/MIME - SIP Header Privacy and Integrity using S/MIME: Tunneling SIP - Integrity and Confidentiality Properties of SIP Headers - Confidentiality) 7th paragraph specifies:

It is not particularly useful to encrypt the following header fields: Min-Expires, Timestamp, Authorization, Priority, and WWW- Authenticate. This category also includes those header fields that can be changed by proxy servers (described in the preceding section). UAs SHOULD never include these in an "inner" message if they are not included in the "outer" message. UAs that receive any of these header fields in an encrypted body SHOULD ignore the encrypted values.

Clause 25 specifies "Expires" as a message header with the following syntax:

Expires = "Expires" HCOLON delta-seconds

Requirements from RFC 2976 (The SIP INFO Method)

Clause 2.1 (Header Field Support for INFO Method) Table 1 specifies:

 Header Where INFO

 ------ ----- ----

 Expires g o

Requirements from RFC 3262 (Reliability of Provisional Responses in the Session Initiation Protocol (SIP))

Table 1 specifies:

 Header Where PRACK

 ------ ----- -----

 Expires -

Requirements from RFC 3265 (Session Initiation Protocol (SIP)-Specific Event Notification)

Clause 3.1.1 specifies:

3.1.1. Subscription Duration

SUBSCRIBE requests SHOULD contain an "Expires" header (defined in SIP [1]). This expires value indicates the duration of the subscription. In order to keep subscriptions effective beyond the duration communicated in the "Expires" header, subscribers need to refresh subscriptions on a periodic basis using a new SUBSCRIBE message on the same dialog as defined in SIP [1].

If no "Expires" header is present in a SUBSCRIBE request, the implied default is defined by the event package being used.

200-class responses to SUBSCRIBE requests also MUST contain an "Expires" header. The period of time in the response MAY be shorter but MUST NOT be longer than specified in the request. The period of time in the response is the one which defines the duration of the subscription.

An "expires" parameter on the "Contact" header has no semantics for SUBSCRIBE and is explicitly not equivalent to an "Expires" header in a SUBSCRIBE request or response.

A natural consequence of this scheme is that a SUBSCRIBE with an "Expires" of 0 constitutes a request to unsubscribe from an event.

In addition to being a request to unsubscribe, a SUBSCRIBE message with "Expires" of 0 also causes a fetch of state; see section 3.3.6.

Notifiers may also wish to cancel subscriptions to events; this is useful, for example, when the resource to which a subscription refers is no longer available. Further details on this mechanism are discussed in section 3.2.2.

Clause 3.1.4.1 (Node Behavior - Description of SUBSCRIBE Behavior - Subscriber SUBSCRIBE Behavior - Requesting a Subscription) 4th paragraph specifies:

The "Expires" header in a 200-class response to SUBSCRIBE indicates the actual duration for which the subscription will remain active (unless refreshed).

Clause 3.1.4.2 (Node Behavior - Description of SUBSCRIBE Behavior - Subscriber SUBSCRIBE Behavior - Refreshing of Subscriptions) 3rd paragraph specifies:

If a SUBSCRIBE request to refresh a subscription fails with a non-481 response, the original subscription is still considered valid for the duration of the most recently known "Expires" value as negotiated by SUBSCRIBE and its response, or as communicated by NOTIFY in the "Subscription-State" header "expires" parameter.

Note that many such errors indicate that there may be a problem with the network or the notifier such that no further NOTIFY messages will be received.

Clause 3.1.4.3 specifies:

3.1.4.3. Unsubscribing

Unsubscribing is handled in the same way as refreshing of a subscription, with the "Expires" header set to "0". Note that a successful unsubscription will also trigger a final NOTIFY message.

Clause 3.1.6.1 (Node Behavior - Description of SUBSCRIBE Behavior - Notifier SUBSCRIBE Behavior - Initial SUBSCRIBE Transaction Processing) 4th paragraph specifies:

The notifier MAY also check that the duration in the "Expires" header is not too small. If and only if the expiration interval is greater than zero AND smaller than one hour AND less than a notifier-configured minimum, the notifier MAY return a "423 Interval too small" error which contains a "Min-Expires" header field. The "Min-Expires" header field is described in SIP [1].

Clause 3.1.6.1 (Node Behavior - Description of SUBSCRIBE Behavior - Notifier SUBSCRIBE Behavior - Initial SUBSCRIBE Transaction Processing) 8th paragraph specifies:

The "Expires" values present in SUBSCRIBE 200-class responses behave in the same way as they do in REGISTER responses: the server MAY shorten the interval, but MUST NOT lengthen it.

Clause 3.1.6.4 (Node Behavior - Description of SUBSCRIBE Behavior - Notifier SUBSCRIBE Behavior - Refreshing of Subscriptions) 1st paragraph specifies:

When a notifier receives a subscription refresh, assuming that the subscriber is still authorized, the notifier updates the expiration time for the subscription. As with the initial subscription, the server MAY shorten the amount of time until expiration, but MUST NOT increase it. The final expiration time is placed in the "Expires" header in the response. If the duration specified in a SUBSCRIBE message is unacceptably short, the notifier SHOULD respond with a "423 Subscription Too Brief" message.

Clause 3.3.4 (Node Behavior - General - Dialog creation and termination) 6th paragraph specifies:

A subscription is destroyed when a notifier sends a NOTIFY request with a "Subscription-State" of "terminated".

A subscriber may send a SUBSCRIBE request with an "Expires" header of 0 in order to trigger the sending of such a NOTIFY request; however, for the purposes of subscription and dialog lifetime, the subscription is not considered terminated until the NOTIFY with a "Subscription-State" of "terminated" is sent.

Clause 3.3.6 (Node Behavior - General - Polling Resource State) 1st and 2nd paragraphs specify:

A natural consequence of the behavior described in the preceding sections is that an immediate fetch without a persistent subscription may be effected by sending a SUBSCRIBE with an "Expires" of 0.

Of course, an immediate fetch while a subscription is active may be effected by sending a SUBSCRIBE with an "Expires" equal to the number of seconds remaining in the subscription.

Clause 3.3.6 (Node Behavior - General - Polling Resource State) 4th paragraph specifies:

Note that the NOTIFY messages triggered by SUBSCRIBE messages with "Expires" headers of 0 will contain a "Subscription-State" value of "terminated", and a "reason" parameter of "timeout".

Clause 5.5 (Security Considerations - Man-in-the middle attacks) 1st paragraph specifies:

Even with authentication, man-in-the-middle attacks using SUBSCRIBE may be used to install arbitrary subscriptions, hijack existing subscriptions, terminate outstanding subscriptions, or modify the resource to which a subscription is being made. To prevent such attacks, implementations SHOULD provide integrity protection across "Contact", "Route", "Expires", "Event", and "To" headers of SUBSCRIBE messages, at a minimum. If SUBSCRIBE bodies are used to define further information about the state of the call, they SHOULD be included in the integrity protection scheme.

Clause 7.1 (New Methods) specifies:

 Header Where SUB NOT

 ------ ----- --- ---

 Expires o -

 Expires 2xx m -

Requirements from RFC 3311 (The Session Initiation Protocol UPDATE Method)

Clause 7 (Definition of the UPDATE method) specifies:

 Header field where proxy UPDATE

 __

 Expires -

Requirements from draft-ietf-sip-refer-06 (The SIP Refer Method)

Clause 2.2 (Header Field Support for the REFER Method) specifies:

 Header field where REFER

 Expires R o

Requirements from draft-ietf-sip-message-07 (Session Initiation Protocol Extension for Instant Messaging)

Clause 4 (UAC processing) last paragraph specifies:

The UAC MAY add an Expires header field to limit the validity of the message content. If the UAC adds an Expires header field with a non-zero value it SHOULD also add a Date header field containing the time the message is sent.

Clause 7 (UAS Processing) 7th paragraph specifies:

A MESSAGE request is said to be expired if it contains an Expires header field, and the expiration time indicated has passed. MESSAGE requests without an Expires header field do not expire. If the MESSAGE request containing an Expires header field also contains a Date header field, the UAS SHOULD interpret the Expires header field value as delta time from the Date header field value. If the request does not contain a Date header field, the UAS SHOULD interpret the Expires header value as delta time from the time the UAS received the request.

Clause 9 (Message definition) specifies:

 Header field where proxy MESSAGE

 Expires o

Requirements from draft-olson-simple-publish-01 (SIMPLE Presence Publication Mechanism)

Clause 3 (The PUBLISH method) specifies:

 Header Field where proxy PUBLISH

 __

 Expires o

Clause 3.5 specifies:

3.5 Expires: Header

The event state that is published through the PUBLISH method to a compositor/event agent is soft-state. As such, the PUBLISH SHOULD contain an expiration value for the event state data it is publishing. The intention is to inform the compositor of the expected duration of this event state. This is a separate concern from informing the watchers of this event state of the duration of the composite state.

The publication state expiration should be carried through the standard Expires: header as defined in RFC3261. The value of this expiration may be decreased by the compositor from the expiration given by the publisher, but SHOULD NOT be increased. The final response to the PUBLISH request MUST carry the expiration value chosen by the compositor in an Expires: header. In the absence of an Expires: header, the compositor is free to choose a reasonable default. It is RECOMMENDED that a default of 3600 seconds or one hour be used. The default expiration may vary from event package to event package depending on the semantics of the particular package. When the event state expires, the publisher MAY choose to refresh the publication state by sending another PUBLISH request. When the event state expires, the compositor should apply local policy to determine the new composite event state based on the removal or expiration of this particular publication input. This will typically result in the generation of new notifications for the watchers of the composite event state.

Clause 6 (Security Considerations) 2nd paragraph specifies:

The compositor should throttle incoming publications and the corresponding notifications resulting from the changes in event state. As a first step, careful selection of default Expires: values for the supported event packages at a compositor can help limit refreshes of event state. Additional throttling and debounce logic at the compositor is advisable to further reduce the notification traffic produced as a result of a PUBLISH method.

Summary of IETF requirements

The usage of the Expires header is specific to each individual method.

· REGISTER method: Optional for a UA to be able to send the header in a request (the Contact header provides an alternative). Mandatory to be able to receive the header in a request. It is not used in REGISTER responses as the Contact header carries that function. Proxies pass the header on transparently.

· SUBSCRIBE method: Optional (Recommended) for a UA to be able to send the header in a request. Mandatory to be able to receive the header in a request. Mandatory to be able to send and receive the header in a 2xx response. Proxies pass the header on transparently.

· INVITE method: Optional for a UA to be able to send the header in a request. Optional to be able to receive the header in a request. Proxies pass the header on transparently.

· REFER method: Optional for a UA to be able to send the header in a request. Optional to be able to receive the header in a request. Proxies pass the header on transparently.

· MESSAGE method: Optional for a UA to be able to send the header in a request. Optional to be able to receive the header in a request. Proxies pass the header on transparently.

· PUBLISH method: Optional (Recommended) for a UA to be able to send the header in a request. Mandatory to be able to receive the header in a request. Mandatory to be able to send and receive the header in a 2xx response. Proxies pass the header on transparently.

· INFO defines the header. The nature of the header usage has changed since the publication of that specification, therefore it is assumed that this header is no longer valid for that method.

For all other methods the header is not used.

Summary of 3GPP usage

No additional 3GPP requirements.

