Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040284

Meeting #27, Miami, FL, USA, 10-14 May 2004

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	113
	(

rev
	-
	(

Current version:
	6.0.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Remove the <<new>> stereotype from methods which are no longer new

	
	

	Source:
(

	CN5 Ultan Mulligan, ETSI PTCC

	
	

	Work item code:
(

	OSA3
	
	Date: (

	14/05/2004

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	The <<new>> stereotype is used to indicate a new method has been added to the specification. However, some methods have been newly introduced more than a year ago, and in Rel-5, yet they still carry the <<new>> stereotype in Rel-6. For these methods, the <<new>> stereotype can be removed from their title and description.
Although editorial, this change is being applied throughout the 29.198 Rel-6 specification set, and so, on MCC advice, CRs have been generated to make this process visible.

	
	

	Summary of change:
(

	Remove the <<new>> stereotype from the documentation of methods which were newly introduced prior to the creation of the Rel-6 specifications, i.e. from methods in the Rel-6 specifications which were newly introduced into Rel-5 at or before the March 2003 plenary.

	
	

	Consequences if
(

not approved:
	The specifications will contain misleading information, indicating certain methods as being newly introduced, when in fact they are not

	
	

	Clauses affected:
(

	 6.3, 7.3.3, 8.3.4

	
	

	
	Y
	N
	
	

	Other specs
(

	X
	
	 Other core specifications
(

	TS 29.198-1, 4-3, 5, 7, 8, 11 and 12 Release 6

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	N5-040284 to N5-040290 should be bundled together

Change in Clause 6.3

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

-
the first point of contact for a client to access a Framework provider;

-
the authentication methods for the client and Framework provider to perform an authentication protocol;

-
the client with the ability to select a service capability feature to make use of;

-
the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a different Framework interface:

1)
Initial Contact with the Framework;

2)
Authentication;

3)
Access to Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: IpInterface.
If the IpClientAPILevelAuthentication interface is implemented by a client, authenticate(), challenge(), abortAuthentication() and authenticationSucceeded() methods shall be implemented.

	<<Interface>>

IpClientAPILevelAuthentication

	

	<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.1 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the deprecated method initiateAuthentication() is used on the IpInitial interface instead of initiateAuthenticationWithVersion(). This method will be removed in a later release of the specification.

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the Framework.

The invocation of this method may be interleaved with authenticate() calls by the client on the IpAPILevelAuthentication interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the Framework has responded to any challenge the client may issue.

Returns <response> : This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpOctetSet

6.3.1.1.2 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework. This method is invoked if the framework wishes to abort the authentication process before it has been authenticated by the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client should occur.) Calls to this method after the Framework has been authenticated by the client shall not result in an immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again, however).

Parameters

No Parameters were identified for this method

6.3.1.1.3 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may invoke requestAccess on the Framework's APILevelAuthentication interface following invocation of this method.

Parameters

No Parameters were identified for this method

6.3.1.1.4 Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevelAuthentication interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the Framework has responded to any challenge the client may issue.

This method shall only be used when the method initiateAuthenticationWithVersion() is used on the IpInitial interface.

Returns <response> : This is the response of the client application to the challenge of the framework in the current sequence. The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response string. The Response packet shall make the contents of this returned parameter. The Name field of the CHAP Response packet shall be present but not contain any useful value.

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain any useful value.
Returns

TpOctetSet

6.3.1.2 Interface Class IpClientAccess

Inherits from: IpInterface.
IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access session. This interface and the terminateAccess() method shall be implemented by a client.

	<<Interface>>

IpClientAccess

	

	terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpOctetSet) : void

6.3.1.2.1 Method terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated. If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the authentication with the Framework. This interface shall be implemented by a Framework. The initiateAuthentication() and the initiateAuthenticationWithVersion() methods shall be implemented.

	<<Interface>>

IpInitial

	

	<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of the present document.

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE
6.3.1.3.2 Method initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method using the new method with support for backward compatibility in the framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework response. If the Framework cannot work with the proposed framework version the framework returns an error code (P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for the requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.
frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the version number. Valid version numbers are defined in the respective framework specification.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE, P_INVALID_VERSION
6.3.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.
The Authentication Framework interface is used by client to request access to other interfaces supported by the Framework. The authentication process should in this case be done with some underlying distribution technology authentication mechanism, e.g. CORBA Security.

At least one of IpAuthentication or IpAPILevelAuthentication interfaces shall be implemented by a Framework as a minimum requirement. The requestAccess() method shall be implemented in each.

	<<Interface>>

IpAuthentication

	

	requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef

6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the IpAuthentication or IpAPILevelAuthentication interface. This allows the client to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not being used, since there is no indication to the client at API level that it is authenticated with the Framework.

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework. The access reference provided is unique to the requesting client.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client. If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE, P_INVALID_INTERFACE_TYPE
6.3.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used to initiate the authentication process.

If the IpAPILevelAuthentication interface is implemented by a Framework, then selectEncryptionMethod(), selectAuthenticationMechanism(), authenticate(), challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented. IpAPILevelAuthentication inherits the requirements of IpAuthentication, therefore requestAccess() shall be implemented.

	<<Interface>>

IpAPILevelAuthentication

	

	<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()

This method is deprecated and replaced by selectAuthenticationMechanism(). It shall only be used when the IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the prescribed encryption method).

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the client are conveyed to the framework.
Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
6.3.1.5.2 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.

The invocation of this method may be interleaved with authenticate() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994). The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.3 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This method is invoked if the client no longer wishes to continue the authentication process, (unless the framework responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated. If this method is invoked after the client has been authenticated by the Framework, it shall not result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client again, however).

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.4 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful authentication of the client.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.5 Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of API level Authentication. The Framework will select one of the suggested authentication mechanisms and that mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using initiateAuthenticationWithVersion() on the IpInitial interface.

Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList : in TpAuthMechanismList

The list of authentication mechanisms supported by the client.
Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
6.3.1.5.6 Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthenticationWithVersion() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.

The invocation of this method may be interleaved with challenge() calls by the framework on the client's APILevelAuthentication interface.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using initiateAuthenticationWithVersion() on the IpInitial interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response string. The Response packet shall make the contents of this returned parameter. The Name field of the CHAP Response packet shall be present but not contain any useful value.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain any useful value.
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.6 Interface Class IpAccess

Inherits from: IpInterface.
This interface shall be implemented by a Framework. As a minimum requirement the obtainInterface() and obtainInterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) : IpInterfaceRef

<<deprecated>> endAccess (endAccessProperties : in TpEndAccessProperties) : void

listInterfaces () : TpInterfaceNameList

<<deprecated>> releaseInterface (interfaceName : in TpInterfaceName) : void

selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : TpSigningAlgorithm

terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

6.3.1.6.1 Method obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME
6.3.1.6.2 Method obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.) If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME, P_INVALID_INTERFACE_TYPE
6.3.1.6.3 Method <<deprecated>> endAccess()

This method is deprecated and will be removed in a later release. It is replaced with terminateAccess. The endAccess operation is used by the client to request that its access session with the framework is ended. After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_PROPERTY
6.3.1.6.4 Method listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework makes available.

Parameters

No Parameters were identified for this method

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.6.5 Method <<deprecated>> releaseInterface()

This method is deprecated and will be removed in a later release. It is replaced with relinquishInterface. The client uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME
6.3.1.6.6 Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for use in all cases where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall be the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method remains valid for an instance of IpAccess and until this method is re-invoked by the client. If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. This is the signing algorithm chosen by the Framework. The chosen algorithm shall be taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList

The list of signing algorithms supported by the client.
Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM
6.3.1.6.7 Method terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE
6.3.1.6.8 Method relinquishInterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
terminationText : in TpString

This is the termination text describes the reason for the release of the interface. This text is required simply because the digitalSignature parameter requires a terminationText to sign.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the interface is released, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME

End of Change in Clause 6.3

Start of Change in Clause 7.3.3

7.3.3 Integrity Management Interface Classes
7.3.3.1 Interface Class IpAppFaultManager

Inherits from: IpInterface.
This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface that is specified when the client application obtains the Fault Management interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface

	<<Interface>>

IpAppFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> svcUnavailableInd (serviceID : in TpServiceID, reason : in TpSvcUnavailReason) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : void

appUnavailableInd (serviceID : in TpServiceID) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void

svcAvailStatusInd (serviceID : in TpServiceID, reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsErrorList, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) : void

<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

7.3.3.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
7.3.3.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the application must carry out a test on itself, to check that it is operating correctly. The application reports the test result by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of a failure within the framework. The client application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified. The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
7.3.3.1.5 Method <<deprecated>> svcUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method svcAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Service is unavailable and also when the Service becomes available again.

The framework invokes this method to inform the client application that it may experience difficulties using its instance of the indicated service.

Parameters

serviceID : in TpServiceID

Identifies the affected service.
reason : in TpSvcUnavailReason

Identifies the reason why the service is no longer available
7.3.3.1.6 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate requests and responses.

This method is used by the framework to provide fault statistics to a client application in response to a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is an empty list, then the fault statistics are for the framework.
7.3.3.1.7 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available
7.3.3.1.8 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.
7.3.3.1.9 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate requests and errors.

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
serviceIDs : in TpServiceIDList

Specifies the framework or services that were included in the general fault statistics record request. If the serviceIDs parameter is an empty list, then the fault statistics were requested for the framework.
7.3.3.1.10 Method appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not responding.

Parameters

serviceID : in TpServiceID

Specifies the service for which the indication of unavailability was received.
7.3.3.1.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate requests and responses.

This method is used by the framework to solicit fault statistics from the client application, for example when the framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the IpFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the client application.
7.3.3.1.12 Method svcAvailStatusInd()

The framework invokes this method to inform the client application about the Service instance availability status, i.e. that it can no longer use its instance of the indicated service according to the reason parameter but as well information when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a different service instance). The client application can also wait for the problem to be solved and just stop the usage of the service instance until the svcAvailStatusInd() is called again with the reason SVC_AVAILABLE.

Parameters

serviceID : in TpServiceID

Identifies the affected service.
reason : in TpSvcAvailStatusReason

Identifies the reason why the service is no longer available or that it has become available again.
7.3.3.1.13 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is an empty list, then the fault statistics are for the framework.
In the case where a list of services is present, this is an ordered list in which the location of the service in this list corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.
7.3.3.1.14 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this error (when it arrives) with the original request.
faultStatistics : in TpFaultStatsErrorList

The list of fault statistics errors returned.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the list of fault statistics errors returned. If the serviceIDs parameter is an empty list, then the fault statistics error relates to the framework.
In the case where a list of services is present, this is an ordered list in which the location of the service in this list corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.
7.3.3.1.15 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation on the IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for the application during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes operation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the client application.

7.3.3.1.16 Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter or that the Framework has become available again. The client application may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
7.3.3.2 Interface Class IpFaultManager

Inherits from: IpInterface.
This interface is used by the application to inform the framework of events that affect the integrity of the framework and services, and to request information about the integrity of the system. The fault manager operations do not exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented. If the Framework is capable of invoking the IpAppFaultManager.appActivityTestReq() method, it shall implement appActivityTestRes() and appActivityTestErr() in this interface. If the Framework is capable of invoking IpAppFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcUnavailableInd (serviceID : in TpServiceID) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> appUnavailableInd (serviceID : in TpServiceID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void

7.3.3.2.1 Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as there is a one to one relationship between the client application and a service, i.e. there is only one service instance of the specified service per client application, it is the obligation of the framework to determine the service instance ID from the service ID.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.
svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by an empty string.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.2 Method appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
7.3.3.2.3 Method svcUnavailableInd()

This method is used by the client application to inform the framework that it can no longer use its instance of the indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this request, the framework should take the appropriate corrective action.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.4 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate requests and responses.

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the framework must produce a fault statistics record, for either the framework or for the client's instances of the specified services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes operation on the IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
serviceIDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fault statistics record. If this parameter is not an empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault statistics record of the framework is returned.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.5 Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
7.3.3.2.6 Method <<deprecated>> appUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. Applications can indicate they no longer use a particular service instance using IpServiceAgreementManagement.terminateServiceAgreement(). Applications can indicate a fault with a particular service instance using IpFaultManager.svcUnavailableInd().

This method is used by the application to inform the framework that it is ceasing its use of the service instance. This may a result of the application detecting a failure. The framework assumes that the session between this client application and service instance is to be closed and updates its own records appropriately as well as attempting to inform the service instance and/or its administrator.

Parameters

serviceID : in TpServiceID

Identifies the affected application.
Raises

TpCommonExceptions
7.3.3.2.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate requests and responses.

This method is used by the client application to provide fault statistics to the framework in response to a genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
7.3.3.2.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate requests and errors.

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
7.3.3.2.9 Method appAvailStatusInd()

This method is used by the application to inform the framework of its availability status. If the Application has detected a failure it uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its use of all of its subscribed service instances. When the Application is working again it shall call this method again with the APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall also attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Framework and the Service that the Application is available again.
Raises

TpCommonExceptions
7.3.3.2.10 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the framework must produce a fault statistics record, for either the framework or for the client's instances of the specified services during the specified time interval, which is returned to the client application using the generateFaultStatisticsRecordRes operation on the IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the application to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
serviceIDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fault statistics record. If this parameter is not an empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault statistics record of the framework is returned.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.11 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
7.3.3.2.12 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
7.3.3.3 Interface Class IpAppHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the client application by the framework.

	<<Interface>>

IpAppHeartBeatMgmt

	

	enableAppHeartBeat (interval : in TpInt32, fwInterface : in IpHeartBeatRef) : void

disableAppHeartBeat () : void

changeInterval (interval : in TpInt32) : void

7.3.3.3.1 Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
fwInterface : in IpHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
7.3.3.3.2 Method disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method

7.3.3.3.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
7.3.3.4 Interface Class IpAppHeartBeat

Inherits from: IpInterface.
The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

	<<Interface>>

IpAppHeartBeat

	

	pulse () : void

7.3.3.4.1 Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse at the end of every interval specified in the parameter to the IpHeartBeatMgmt.enableHeartbeat() method. If the pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method

7.3.3.5 Interface Class IpHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the framework by a client application. If the IpHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBeat() shall be implemented.

	<<Interface>>

IpHeartBeatMgmt

	

	enableHeartBeat (interval : in TpInt32, appInterface : in IpAppHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

7.3.3.5.1 Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
appInterface : in IpAppHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Raises

TpCommonExceptions
7.3.3.5.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
7.3.3.5.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions
7.3.3.6 Interface Class IpHeartBeat

Inherits from: IpInterface.
The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of invoking IpAppHeartBeatMgmt.enableHeartBeat(), it shall implement IpHeartBeat and the pulse() method.

	<<Interface>>

IpHeartBeat

	

	pulse () : void

7.3.3.6.1 Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse at the end of every interval specified in the parameter to the IpAppHeartBeatMgmt.enableAppHeartbeat() method. If the pulse() is not received within the specified interval, then the client application can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
7.3.3.7 Interface Class IpAppLoadManager

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

	<<Interface>>

IpAppLoadManager

	

	<<deprecated>> queryAppLoadReq (timeInterval : in TpTimeInterval) : void

<<deprecated>> queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

7.3.3.7.1 Method <<deprecated>> queryAppLoadReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method queryAppLoadStatsReq shall be used instead, using the new identifier to correlate requests and responses.

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
7.3.3.7.2 Method <<deprecated>> queryLoadRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method queryLoadStatsRes shall be used instead, using the new identifier to correlate requests and responses.

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
7.3.3.7.3 Method <<deprecated>> queryLoadErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method queryLoadStatsErr shall be used instead, using the new identifier to correlate requests and errors.

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
7.3.3.7.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework which have been registered for load level notifications) this method is invoked on the application. In addition this method shall be invoked on the application in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
7.3.3.7.5 Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager.

Parameters

No Parameters were identified for this method

7.3.3.7.6 Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

7.3.3.7.7 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the application. Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager.

Parameters

No Parameters were identified for this method

7.3.3.7.8 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters

No Parameters were identified for this method

7.3.3.7.9 Method <<new>> queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
7.3.3.7.10 Method <<new>> queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.
7.3.3.7.11 Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
7.3.3.8 Interface Class IpLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. To handle responses and reports, the client application developer must implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then resumeNotification() shall be implemented also. If a Framework is capable of invoking the IpAppLoadManager.queryAppLoadStatsReq() method, then it shall implement queryAppLoadStatsRes() and queryAppLoadStatsErr() methods in this interface.

	<<Interface>>

IpLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

<<deprecated>> queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void

<<deprecated>> queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

createLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

destroyLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

resumeNotification (serviceIDs : in TpServiceIDList) : void

suspendNotification (serviceIDs : in TpServiceIDList) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void

<<new>> queryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> queryAppLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

7.3.3.8.1 Method reportLoad()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded. In addition this method shall be called by the application in order to report current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.
Raises

TpCommonExceptions
7.3.3.8.2 Method <<deprecated>> queryLoadReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method queryLoadStatsReq shall be used instead, using the new identifier to correlate requests and responses.

The client application uses this method to request the framework to provide load statistic records for the framework or for its instances of the individual services. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load statistics record of the framework is returned.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.3 Method <<deprecated>> queryAppLoadRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method queryAppLoadStatsRes shall be used instead, using the new identifier to correlate requests and responses.

The client application uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.
Raises

TpCommonExceptions
7.3.3.8.4 Method <<deprecated>> queryAppLoadErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method queryAppLoadStatsErr shall be used instead, using the new identifier to correlate requests and errors.

The client application uses this method to return an error response to the framework that requested the application's load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpCommonExceptions
7.3.3.8.5 Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either the framework or with its instances of the individual services used by the application. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFs to be registered for load control. To register for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.6 Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the framework or with its instances of the individual services used by the application. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.7 Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. after a period of suspension during which the application handled a temporary overload condition. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework should be resumed. To resume notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.8 Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. while the application handles a temporary overload condition. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended. To suspend notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.9 Method <<new>> queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or for its instances of the individual services. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the application to correlate the response (when it arrives) with this request.
serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load statistics record of the framework is returned.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.10 Method <<new>> queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.
Raises

TpCommonExceptions
7.3.3.8.11 Method <<new>> queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application's load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpCommonExceptions
7.3.3.9 Interface Class IpOAM

Inherits from: IpInterface.
The OAM interface is used to query the system date and time. The application and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. This interface and the systemDateTimeQuery() method are optional.

	<<Interface>>

IpOAM

	

	systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
7.3.3.10 Interface Class IpAppOAM

Inherits from: IpInterface.
The OAM client application interface is used by the Framework to query the application date and time, for synchronisation purposes. This method is invoked by the Framework to interchange the framework and client application date and time.

	<<Interface>>

IpAppOAM

	

	systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.10.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the application. The application responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (application).

Parameters

systemDateA ndTime : in TpDateAndTime

This is the system date and time of the framework.
Returns

TpDateAndTime

End of Change in Clause 7.3.3

Start of Change in Clause 8.3.4

8.3.4 Integrity Management Interface Classes
8.3.4.1 Interface Class IpFwFaultManager

Inherits from: IpInterface.
This interface is used by the service instance to inform the framework of events which affect the integrity of the API, and request fault management status information from the framework. The fault manager operations do not exchange callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented. If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall implement svcActivityTestRes() and svcActivityTestErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

<<deprecated>> svcUnavailableInd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : void

<<deprecated>> generateFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

<<deprecated>> generateFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

svcAvailStatusInd (reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void

8.3.4.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
testSubject : in TpSubjectType

Identifies the subject for testing (framework or client application).
Raises

TpCommonExceptions
8.3.4.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.1.3 Method appUnavailableInd()

This method is used by the service instance to inform the framework that the client application is not responding. On receipt of this indication, the framework must act to inform the client application.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.1.4 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate requests and responses.

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, for the framework or for the application during the specified time interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the IpSvcFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
recordSubject : in TpSubjectType

Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions
8.3.4.1.5 Method <<deprecated>> svcUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method svcAvailStatusInd() shall be used instead, using the new and updated reason parameter to inform the Framework the reason why the Service has become unavailable and also when the Service instance becomes available again.

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The framework should inform the client application that is currently using this service instance that it is unavailable for use (via the svcUnavailableInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcUnavailReason

Identifies the reason for the service instance's unavailability.
Raises

TpCommonExceptions
8.3.4.1.6 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.1.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs parameter has no meaning. It is replaced with generateFaultStatsRecordRes().

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the services that are included in the general fault statistics record. The serviceIDs parameter is not allowed to be an empty list.
Raises

TpCommonExceptions
8.3.4.1.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs parameter has no meaning. It is replaced with generateFaultStatsRecordErr().

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
serviceIDs : in TpServiceIDList

Specifies the services that were included in the general fault statistics record request. The serviceIDs parameter is not allowed to be an empty list.
Raises

TpCommonExceptions
8.3.4.1.9 Method <<deprecated>> generateFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate requests and responses.

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
8.3.4.1.10 Method <<deprecated>> generateFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate requests and errors.

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
8.3.4.1.11 Method svcAvailStatusInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use according to the provided reason and as well to inform the Framework when the Service instance becomes available again. The framework should inform the client applications that are currently using this service instance that it is unavailable and as well when it becomes available again for use (via the svcAvailStatusInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcAvailStatusReason

Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to inform the Framework when the Service instance becomes available again.
Raises

TpCommonExceptions
8.3.4.1.12 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, for the framework or for the application during the specified time interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
recordSubject : in TpSubjectType

Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions
8.3.4.1.13 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
8.3.4.1.14 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
8.3.4.2 Interface Class IpSvcFaultManager

Inherits from: IpInterface.
This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified when the service instance obtains the Fault Management Framework interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented. If the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement activityTestRes() and activityTestErr() in this interface. If the Service is capable of invoking IpFwFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

<<deprecated>> appUnavailableInd () : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

<<deprecated>> generateFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) : void

<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

8.3.4.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpCommonExceptions
8.3.4.2.3 Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of a failure within the framework. The service instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Raises

TpCommonExceptions
8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions
8.3.4.2.5 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available
Raises

TpCommonExceptions
8.3.4.2.6 Method svcUnavailableInd()

The framework invokes this method to inform the service instance that the client application has reported that it can no longer use the service instance.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.2.7 Method <<deprecated>> appUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method appAvailStatusInd shall be used instead, using the new reason parameter to inform the Service the reason why the Application is unavailable and also when the application becomes available again.

The framework invokes this method to inform the service instance that the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.2.8 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate requests and responses.

This method is used by the framework to provide fault statistics to a service instance in response to a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.
Raises

TpCommonExceptions
8.3.4.2.9 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.2.10 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate requests and errors.

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpCommonExceptions
8.3.4.2.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs parameter has no meaning. It is replaced with generateFaultStatsRecordReq().

This method is used by the framework to solicit fault statistics from the service, for example when the framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager interface. On receipt of this request the service must produce a fault statistics record, for either the framework or for the client's instances of the specified services during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the IpFwFaultManager interface. If the framework does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
serviceIDs : in TpServiceIDList

Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
8.3.4.2.12 Method <<deprecated>> generateFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate requests and responses.

This method is used by the framework to solicit fault statistics from the service instance, for example when the framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the IpFwFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
Raises

TpCommonExceptions
8.3.4.2.13 Method appAvailStatusInd()

The framework invokes this method to inform the service instance that the client application is no longer available using different reasons for the unavailability. This may be a result of the application reporting a failure. Alternatively, the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Service that the Application is available again.
Raises

TpCommonExceptions
8.3.4.2.14 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.
Raises

TpCommonExceptions
8.3.4.2.15 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpCommonExceptions
8.3.4.2.16 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the framework was asked for these statistics by the client application using the generateFaultStatisticsRecordReq operation on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes operation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
Raises

TpCommonExceptions
8.3.4.2.17 Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter or that the Framework has become available again. The service instance may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
8.3.4.3 Interface Class IpFwHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the IpFwHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBeat() shall be implemented.

	<<Interface>>

IpFwHeartBeatMgmt

	

	enableHeartBeat (interval : in TpInt32, svcInterface : in IpSvcHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.4.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
svcInterface : in IpSvcHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
8.3.4.3.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.3.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions
8.3.4.4 Interface Class IpFwHeartBeat

Inherits from: IpInterface.
 The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a Framework is capable of invoking IpSvcHeartBeatMgmt.enableHeartBeat(), it shall implement IpFwHeartBeat and the pulse() method.

	<<Interface>>

IpFwHeartBeat

	

	pulse () : void

8.3.4.4.1 Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse at the end of every interval specified in the parameter to the IpSvcHeartBeatMgmt.enableSvcHeartbeat() method. If the pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.5 Interface Class IpSvcHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the IpSvcHeartBeatMgmt interface is implemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat() shall be implemented.

	<<Interface>>

IpSvcHeartBeatMgmt

	

	enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.4.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
fwInterface : in IpFwHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
8.3.4.5.2 Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.5.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions
8.3.4.6 Interface Class IpSvcHeartBeat

Inherits from: IpInterface.
The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Service is capable of invoking IpFwHeartBeatMgmt.enableHeartBeat(), it shall implement IpSvcHeartBeat and the pulse() method.

	<<Interface>>

IpSvcHeartBeat

	

	pulse () : void

8.3.4.6.1 Method pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at the end of every interval specified in the parameter to the IpFwHeartBeatMgmt.enableHeartbeat() method. If the pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.7 Interface Class IpFwLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific service. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the IpSvcLoadManager interface to provide the callback mechanism.

If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then resumeNotification() shall be implemented also. If a Framework is capable of invoking the IpSvcLoadManager.querySvcLoadStatsReq() method, then it shall implement querySvcLoadStatsRes() and querySvcLoadStatsErr() methods in this interface.

	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

<<deprecated>> queryLoadReq (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

<<deprecated>> querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

<<new>> querySvcLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> querySvcLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in TpLoadStatisticError) : void

8.3.4.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In addition this method shall be called by the service instance in order to report current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance's load level.
Raises

TpCommonExceptions
8.3.4.7.2 Method <<deprecated>> queryLoadReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method queryLoadStatsReq shall be used instead, using the new identifier to correlate requests and responses.

The service instance uses this method to request the framework to provide load statistics records for the framework or for the application that uses the service instance.

Parameters

querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions
8.3.4.7.3 Method <<deprecated>> querySvcLoadRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method querySvcLoadStatsRes shall be used instead, using the new identifier to correlate requests and responses.

The service instance uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpCommonExceptions
8.3.4.7.4 Method <<deprecated>> querySvcLoadErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method querySvcLoadStatsErr shall be used instead, using the new identifier to correlate requests and errors.

The service instance uses this method to return an error response to the framework that requested the service instance's load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.
Raises

TpCommonExceptions
8.3.4.7.5 Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the framework or with the application that uses the service instance. Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.
Raises

TpCommonExceptions
8.3.4.7.6 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.
Raises

TpCommonExceptions
8.3.4.7.7 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the framework or with the application that uses the service instance; e.g. while the service instance handles a temporary overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be suspended.
Raises

TpCommonExceptions
8.3.4.7.8 Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the framework or with the application that uses the service instance; e.g. after a period of suspension during which the service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the framework should be resumed.
Raises

TpCommonExceptions
8.3.4.7.9 Method <<new>> queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or for the application that uses the service instance.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions
8.3.4.7.10 Method <<new>> querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpCommonExceptions
8.3.4.7.11 Method <<new>> querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.
Raises

TpCommonExceptions
8.3.4.8 Interface Class IpSvcLoadManager

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function. The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, then loadLevelNotification() shall be implemented. If a the Service is capable of invoking the IpFwLoadManager.queryLoadStatsReq() method, then it shall implement queryLoadStatsRes() and queryLoadStatsErr() methods in this interface.

	<<Interface>>

IpSvcLoadManager

	

	<<deprecated>> querySvcLoadReq (timeInterval : in TpTimeInterval) : void

<<deprecated>> queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> querySvcLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

8.3.4.8.1 Method <<deprecated>> querySvcLoadReq()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method querySvcLoadStatsReq shall be used instead, using the new identifier to correlate requests and responses.

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
8.3.4.8.2 Method <<deprecated>> queryLoadRes()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method queryLoadStatsRes shall be used instead, using the new identifier to correlate requests and responses.

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpCommonExceptions
8.3.4.8.3 Method <<deprecated>> queryLoadErr()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method queryLoadStatsErr shall be used instead, using the new identifier to correlate requests and errors.

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
8.3.4.8.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or framework which has been registered for load level notifications) this method is invoked on the SCF. In addition this method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions
8.3.4.8.5 Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.8.6 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.8.7 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service instance. Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.8.8 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service instance.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.8.9 Method <<new>> querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
8.3.4.8.10 Method <<new>> queryLoadStatsRes()

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpCommonExceptions
8.3.4.8.11 Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
8.3.4.9 Interface Class IpFwOAM

Inherits from: IpInterface.
The OAM interface is used to query the system date and time. The service and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of this API. This interface and the systemDateTimeQuery() method are optional.

	<<Interface>>

IpFwOAM

	

	systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passes in its own date and time to the framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
8.3.4.10 Interface Class IpSvcOAM

Inherits from: IpInterface.
This interface and the systemDateTimeQuery() method are optional.

	<<Interface>>

IpSvcOAM

	

	systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (service).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework. The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
End of Change in Clause 8.3.4

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4
	4.0.0
	4.0.1

	Sep 2001
	CN_13
	NP-010466
	002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	003
	--
	Update to the definitions of method svcUnavailableInd
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	004
	--
	Only one subject per method invocation for fault and load management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	005
	--
	Fault management is missing some *Err methods
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	006
	--
	Method balance on Fault management interfaces
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	007
	--
	Change "TpString" into "TpOctetSets" in authentication and access
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	008
	--
	Replacement of register/unregisterLoadController
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	009
	--
	Redundant Framework Heartbeat Mechanism
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	010
	--
	Add a releaseInterface() method to IpAccess
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	011
	--
	Removal of serviceID from queryAppLoadReq()
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	012
	--
	Addition of listInterfaces() method
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	013
	--
	Introduction and use of new Service Instance ID
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	014
	--
	P_UNAUTHORISED_PARAMETER_VALUE thrown if non-accessible serviceID is provided
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	015
	--
	Introduction of Service Instance Lifecycle Management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	016
	--
	Add support for multi-vendorship
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	017
	--
	Removal of P_SERVICE_ACCESS_TYPE
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	018
	--
	Confusing meaning of prescribedMethod
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	019
	--
	A client should only have one instance of a given service
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	020
	--
	Some methods on the IpApp interfaces should throw exceptions
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010596
	021
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010596
	022
	--
	Correctionto Framework (FW)
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020105
	023
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	024
	--
	Replace erroneous mention of P_OSA_ACCESS by the correct value P_OSA_AUTHENTICATION
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	025
	--
	Add missing inheritance in service agreement management interfaces
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	026
	--
	Include Operation Set as part of General Service Properties
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	027
	--
	Improved description of activityTestReq with respect to ServiceInstanceID
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	028
	--
	OSA Framework - Generate statistics records on behalf of another entity using genFaultStatsRecordReq
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	029
	--
	Update the interface names for alignment between 3GPP and ETSI/Parlay
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020179
	030
	--
	Solving the problem in the OSA Framework with method appUnavailableInd() in a scenario with multiple service sessions per access session
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020179
	031
	--
	Adding missing mandatory method (authenticationSucceeded) to sequence flow
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020186
	032
	--
	Remove redundant data type definition TpServiceSpecString
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020181
	033
	--
	Addition of support for Java API technology realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	035
	--
	Addition of support for WSDL realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	036
	--
	Clarify semantics of service properties of type BOOLEAN_SET
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	037
	--
	Addition of version management support to the Framework (29.198-03) in run-time
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	038
	--
	Enhancements on subscription management error information
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	039
	--
	Delete conflicting description of P_APPLICATION_NOT_ACTIVATED
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	040
	--
	Note added for P_SERVICE_INSTANCE Choice Element Name
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	041
	--
	Correcting the method descriptions for abortAuthentication and for initiateAuthentication
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	042
	--
	Correcting the description of heartbeat failure
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	043
	--
	Correcting erroneous FW<->Service instance sequence diagrams
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	044
	--
	Correcting the scope of TpFwID, which currently is giving it false limitations
	4.5.0
	5.0.0

	Sep 2002
	CN_17
	NP-020428
	046
	
	Correction to description of TpServicePropertyTypeName
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	047
	
	Remove undefined exception in registerService
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	048
	
	Remove ServiceIDs from IpFwFaultManager.genFaultStatsRecordReq()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	049
	
	Correct appUnavailableInd and related methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	050
	
	Remove unusable exception from IpFaultManager.appActivityTestRes()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	051
	
	Clarify the sequence of events in signing the service agreement
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	052
	
	Correct use of electronic signatures
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	053
	
	Addition of Sequence Diagrams for terminateAccess
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	054
	
	Add indication what part of service agreement must be signed
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	055
	
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	056
	
	Introduce types and modes for generic properties
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	057
	
	Correction on use of NULL in Framework API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	058
	
	Add Negotiation of Authentication Mechanism for OSA level Authentication
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	058
	
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030019
	063
	-
	Correction to Initial Access Sequence Diagram
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	065
	-
	Enable creation/destruction of load level notifications at the request of Framework
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	067
	-
	Correction of Sequence for Framework – Service load management
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	074
	-
	Add Initial Load Notification report for Framework Integrity Management Load Notification model
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	068
	--
	Correction to Application's requirements for supporting methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	069
	--
	Correction of status of methods to interfaces in clause 7.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	070
	--
	Correction of status of methods to interfaces in clause 8.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	071
	--
	Correction of status of methods to interfaces in clause 6.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	075
	--
	Adding the appAvailStatusInd() and svcAvailStatusInd() methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	076
	--
	Remove race condition in signServiceAgreement
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	077
	--
	Change reference to deprecated method "authenticate" in TpAuthMechanism to "challenge"
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030237
	079
	--
	Correction to TpEncryptionCapability to correct support for Triple-DES
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	081
	--
	Correction of the Framework Service Instance Lifecycle Manager Sequence Diagram
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	083
	--
	Correction of the use of TpDomainID in Framework initiateAuthentication method
	5.2.0
	5.3.0

	Sep 2003
	CN_21
	NP-030352
	085
	--
	Correction to Java Realisation Annex
	5.3.0
	5.4.0

	Dec 2003
	CN_22
	NP-030549
	086
	--
	Correction of the sequence diagram for Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	087
	--
	Correction of State Transition Diagram for IpAccess
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	088
	--
	Correction of Correlation Behaviour in Load Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	089
	--
	Correction of Correlation Behaviour in Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	090
	--
	Correction and Clarification of Framework Access Session Behaviour
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030553
	091
	--
	Add OSA API support for 3GPP2 networks
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	092
	--
	Add description for service super and sub types
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	093
	--
	Add support for registration of additional service property types and modes
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	094
	--
	Improve User Interaction message management functions
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	095
	--
	Add new values for TpServiceTypeName for Policy Management
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	096
	--
	Allow for applications to re-obtain the reference to the service manager
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	097
	--
	Add support in OSA to inform applications about new SCSs and their level of Backward compatibility – Align with SA1's 22.127
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	098
	--
	Add “Extended User Status” as service type name - Align with 29.198-06
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	099
	--
	Add P_USER_BINDING to TpServiceTypeName
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	100
	--
	Modify Framework Availability Indication in Fault Management
	5.5.0
	6.0.0

	Feb 2004
	--
	--
	--
	--
	Added Java code attachment 2919803J2EE.zip which was delivered late by outside developers. See Annex C.
	6.0.0
	6.0.1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

