Page 1

3GPP TSG_CN5 (Open Service Access – OSA)
N5-010563
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001
	CR-Form-v4

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	021
	(

rev
	-
	(

Current version:
	4.2.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Replacing Out Parameters with Return Types

	
	

	Source:
(

	CN5

	
	

	Work item code:
(

	OSA1
	
	Date: (

	19/07/2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	At CN5 and CN it was agreed that Out-parameters should be removed from methods as a means of returning information, to be replaced by Return Types, in line with commonly used programming practice

	
	

	Summary of change:
(

	For each method, replace the return parameter TpResult with:
’void’ if the method has no out-parameter;
or the type of the out-parameter if the method has an out-parameter, and delete the out-parameter from the method.

	
	

	Consequences if
(

not approved:
	If this particular CR is not agreed, TS 29.198-3 is out of sync. with the other parts of TS 29.198.

If the related batch of CRs is not agreed, OSA will have a limited acceptance among the application development community, since it will be more difficult to implement. This presents a risk to the return on investment in development of OSA.

	
	

	Clauses affected:
(

	5, 8, 12, Annex B

	
	

	Other specs
(

	X
	 Other core specifications
(

	All other parts of TS 29.198 Rel-4

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
5 The Base Interface Specification

5.1 Interface Specification Format

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

5.4.1 Interface Class IpService
Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void
setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionID's.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
Raises

TpCommonExceptions

Method

setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not uses SessionID's.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID

===============================Next changed section===================================

8 Framework-to-Application Interface Classes

8.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

-
the first point of contact for an application to access a Home Environment;

-
the authentication methods for the application and Home Environment to perform an authentication protocol;

-
the application with the ability to select a service capability feature to make use of;

-
the application with a portal to access other Framework interfaces.

The process by which the application accesses the Home Environment has been separated into 3 stages, each supported by a different Framework interface:

1)
Initial Contact with the Framework;

2)
Authentication to the Framework;

3)
Access to Framework and Service Capability Features.

8.1.1 Interface Class IpAppAPILevelAuthentication

Inherits from: IpInterface.
	<<Interface>>

IpAppAPILevelAuthentication

	

	authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString) : TpString
abortAuthentication () : void
authenticationSucceeded () : void

Method

authenticate()

This method is used by the framework to authenticate the client application using the mechanism indicated in prescribedMethod. The client application must respond with the correct responses to the challenges presented by the framework. The number of exchanges and the order of the exchanges is dependent on the prescribedMethod. (These may be interleaved with authenticate() calls by the client application on the IpAPILevelAuthentication interface. This is defined by the prescribedMethod.)

Returns <response> : This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

prescribedMethod : in TpAuthCapability

see selectEncryptionMethod() on the IpAPIlLevelAuthentication interface. This parameter contains the agreed method for authentication. If this is not the same value as returned by selectEncryptionMethod(), then an error code (P_INVALID_AUTH_CAPABILITY) is returned.
challenge : in TpString

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpString
Method

abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to abort the authentication process, (unless the application responded incorrectly to a challenge in which case no further communication with the application should occur.) If this method has been invoked, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client application has been properly authenticated.

Parameters

No Parameters were identified for this method

Method

authenticationSucceeded()

The Framework uses this method to inform the client application of the success of the authentication attempt.

Parameters

No Parameters were identified for this method

8.1.2 Interface Class IpAppAccess

Inherits from: IpInterface.
The Access client application interface is used by the Framework to perform the steps that are necessary in order to allow it to service access.

	<<Interface>>

IpAppAccess

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpString
terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : void
terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : void

Method

signServiceAgreement()

This method is used by the framework to request that the client application sign an agreement on the service. It is called in response to the client application calling the selectService() method on the IpAccess interface of the framework. The framework provides the service agreement text for the client application to sign. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Returns <digitalSignature> : The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.) If the serviceToken is invalid, or not known by the client application,then an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
Returns

TpString
Method

terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Method

terminateAccess()

The terminateAccess operation is used by the framework to end the client application's access session.

After terminateAccess() is invoked, the client application will no longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client application, and should take steps to terminate the client application's access session WITHOUT invoking terminateAccess() on the client application. This follows a generally accepted security model where the framework has decided that it can no longer trust the application and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
8.1.3 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client application to initiate the mutual authentication with the Framework.

	<<Interface>>

IpInitial

	

	initiateAuthentication (appDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

Method

initiateAuthentication()

This method is invoked by the client application to start the process of mutual authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the application domain with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the enterprise domain.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The application domain uses this interface to authenticate with the framework.

Parameters

appDomain : in TpAuthDomain

This identifies the application domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID). It is used to identify the enterprise domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client application. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the Authentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the appDomain and fwDomain authInterface parameters are references to interfaces of type Ip(App)APILevelAuthentication. If P_AUTHENTICATION is selected, the authInterface parameters are refereces to interfaces of type Ip(App)Authentication which is used when an underlying distibution technology authentication mechanism is used.
Returns

TpAuthDomain
Raises

TpCommonExceptions,P_INVALID_DOMAIN_ID,P_INVALID_INTERFACE_TYPE,P_INVALID_AUTH_TYPE
8.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.
The Authentication Framework interface is used by client application to request access to other interfaces supported by the Framework. The mutual authentication process should in this case be done with some underlying distribution technology authentication mechanism, e.g. CORBA Security.

	<<Interface>>

IpAuthentication

	

	requestAccess (accessType : in TpAccessType, appAccessInterface : in IpInterfaceRef) : IpInterfaceRef

Method

requestAccess()

Once application and framework are authenticated, the client application invokes the requestAccess operation on the IpAuthentication or IpAPILevelAuthentication interface. This allows the client application to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client application and framework have successfully completed the authentication process, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

Returns <fwAccessInterface> : This provides the reference for the client application to call the access interface of the framework.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client application. If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
appAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client application. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_ACCESS_TYPE,P_INVALID_INTERFACE_TYPE
8.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by client application to perform its part of the mutual authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

	<<Interface>>

IpAPILevelAuthentication

	

	selectEncryptionMethod (authCaps : in TpAuthCapabilityList) : TpAuthCapability
authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString) : TpString
abortAuthentication () : void
authenticationSucceeded () : void

Method

selectEncryptionMethod()

The client application uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client application. If a mechanism that is acceptable to the framework within the capability of the client application cannot be found, the framework returns an error code (P_NO_ACCEPTABLE_AUTH_CAPABILITY).

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework for the authentication process. If the value of the prescribedMethod returned by the framework is not understood by the client application, it is considered a catastrophic error and the client application must abort.

Parameters

authCaps : in TpAuthCapabilityList

This is the means by which the authentication mechanisms supported by the client application are conveyed to the framework.
Returns

TpAuthCapability
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_NO_ACCEPTABLE_AUTH_CAPABILITY
Method

authenticate()

This method is used by the client application to authenticate the framework using the mechanism indicated in prescribedMethod. The framework must respond with the correct responses to the challenges presented by the client application. The clientAppID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client application (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges and the order of the exchanges is dependent on the prescribedMethod.

Returns <response> : This is the response of the framework to the challenge of the client application in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

prescribedMethod : in TpAuthCapability

see selectEncryptionMethod(). This parameter contains the method that the framework has specified as acceptable for authentication. If this is not the same value as returned by selectEncryptionMethod(), then the framework returns an error code (P_INVALID_AUTH_CAPABILITY).
challenge : in TpString

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpString
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AUTH_CAPABILITY
Method

abortAuthentication()

The client application uses this method to abort the authentication process. This method is invoked if the client application no longer wishes to continue the authentication process, (unless the application responded incorrectly to a challenge in which case no further communication with the application should occur.) If this method has been invoked, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client application has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions,P_ACCESS_DENIED
Method

authenticationSucceeded()

The client application uses this method to inform the framework of the success of the authentication attempt.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions,P_ACCESS_DENIED
8.1.6 Interface Class IpAccess

Inherits from: IpInterface.
	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef
obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, appInterface : in IpInterfaceRef) : IpInterfaceRef
selectService (serviceID : in TpServiceID) : TpServiceToken
signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpSignatureAndServiceMgr
terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : void
endAccess (endAccessProperties : in TpEndAccessProperties) : void

Method

obtainInterface()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface references to other framework interfaces. (The obtainInterfacesWithCallback method should be used if the client application is required to supply a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
Returns

IpInterfaceRef
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME
Method

obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
appInterface : in IpInterfaceRef

This is the reference to the client application interface, which is used for callbacks. If an application interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.) If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME,P_INVALID_INTERFACE_TYPE
Method

selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code (P_INVALID_SERVICE_ID) is returned.
Returns

TpServiceToken
Raises

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_SERVICE_ID
Method

signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpString;

serviceMgrInterface:
 IpInterfaceRef;

};

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
Returns

TpSignatureAndServiceMgr
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED
Method

terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text describes the reason for the termination of the service agreement.
digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNATURE
Method

endAccess()

The endAccess operation is used by the client to request that its access session with the framework is ended. After it is invoked, the client application will no longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.
Raises

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_PROPERTY
8.2 Service Discovery Interface Classes
8.2.1 Interface Class IpServiceDiscovery

Inherits from: IpInterface.
The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and what service "properties" are applicable to each service type. The "listServiceType() method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" returns a description of each service type. The description of service type includes the "service-specific properties" that are applicable to each service type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service discovery APIs are invoked by the enterprise operators or client applications. They are described below.

	<<Interface>>

IpServiceDiscovery

	

	listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription
discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32) : TpServiceList
listSubscribedServices () : TpServiceList

Method

listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters

No Parameters were identified for this method

Returns

TpServiceTypeNameList
Raises

TpCommonExceptions,P_ACCESS_DENIED
Method

describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information about:

· the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples,
· the names of the super types of this service type, and

· whether the service type is currently enabled or disabled.

Parameters

name : in TpServiceTypeName

The name of the service type to be described.
· If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised.
· If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
Returns

TpServiceTypeDescription
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVICE_TYPE
Method

discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services that meet its requirements. The client application passes in a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match the desired service property list that the client application provided. The service properties returned will form a complete view of what the client application will be able to do with the service, as per the service level agreement. If the framework supports service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties.

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service property {name, mode and value list} tuples associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service trading". It is the basis for type safe interactions between the service exporters (via registerService) and service importers (via discoverService). By stating a service type, the importer implies the service type and a domain of discourse for talking about properties of service.
· If the string representation of the "type" does not obey the rules for service type identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised.
· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the properties of its supertypes.
desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList"parameter is a list of service property {name, mode and value list} tuples that the discovered set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the selection of desired services.
max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.
Returns

TpServiceList
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVICE_TYPE,P_INVALID_PROPERTY
Method

listSubscribedServices()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Returns <serviceList> : The "serviceList" parameter returns a list of subscribed services. Each service is characterised by its service ID and a list of service property {name, mode and value list} tuples associated with the service.

Parameters

No Parameters were identified for this method

Returns

TpServiceList
Raises

TpCommonExceptions,P_ACCESS_DENIED
8.3 Integrity Management Interface Classes
8.3.1 Interface Class IpAppFaultManager

Inherits from: IpInterface.
This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface that is specified when the client application obtains the Fault Management interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface

	<<Interface>>

IpAppFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appActivityTestReq (activityTestID : in TpActivityTestID) : void
fwFaultReportInd (fault : in TpInterfaceFault) : void
fwFaultRecoveryInd (fault : in TpInterfaceFault) : void
svcUnavailableInd (serviceID : in TpServiceID, reason : in TpSvcUnavailReason) : void
genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void
fwUnavailableInd (reason : in TpFwUnavailReason) : void

Method

activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Method

appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the application must carry out a test on itself, to check that it is operating correctly. The application reports the test result by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Method

fwFaultReportInd()

The framework invokes this method to notify the client application of a failure within the framework. The client application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Method

fwFaultRecoveryInd()

The framework invokes this method to notify the client application that a previously reported fault has been rectified. The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Method

svcUnavailableInd()

The framework invokes this method to inform the client application that it can no longer use the indicated service. On receipt of this request, the client application must act to reset its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a different service instance).

Parameters

serviceID : in TpServiceID

Identifies the affected service.
reason : in TpSvcUnavailReason

Identifies the reason why the service is no longer available
Method

genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the framework and/or services that are included in the general fault statistics record. The framework is designated by a null value.
Method

fwUnavailableInd()

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available
8.3.2 Interface Class IpFaultManager

Inherits from: IpInterface.
This interface is used by the application to inform the framework of events that affect the integrity of the framework and services, and to request information about the integrity of the system. The fault manager operations do not exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

	<<Interface>>

IpFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void
appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcUnavailableInd (serviceID : in TpServiceID) : void
genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

Method

activityTestReq()

The application invokes this method to test that the framework or a service is operational. On receipt of this request, the framework must carry out a test on itself or on the specified service, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpAppFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.
svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by a null value.
Raises

TpCommonExceptions,P_INVALID_SERVICE_ID
Method

appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions,P_INVALID_SERVICE_ID,P_INVALID_ACTIVITY_TEST_ID
Method

svcUnavailableInd()

This method is used by the client application to inform the framework that it can no longer use the indicated service (either due to a failure in the client application or in the service). On receipt of this request, the framework should take the appropriate corrective action. The framework assumes that the session between this client application and service instance is to be closed and updates its own records appropriately as well as attempting to inform the service instance and/or its administrator. Attempts by the client application to continue using this session should be rejected.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.
Raises

TpCommonExceptions ,P_INVALID_SERVICE_ID
Method

genFaultStatsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the framework must produce a fault statistics record, for the framework and/or for specified services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes operation on the IpAppFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.
serviceIDs : in TpServiceIDList

Specifies the framework and/or services to be included in the general fault statistics record. The framework is designated by a null value.
Raises

TpCommonExceptions ,P_INVALID_SERVICE_ID
8.3.3 Interface Class IpAppHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the Framework by the Client application. Since the OSA APIs are inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of the TpResult is interpreted as a heartbeat response.

	<<Interface>>

IpAppHeartBeatMgmt

	

	enableAppHeartBeat (duration : in TpDuration, fwInterface : in IpHeartBeatRef, session : in TpSessionID) : void
disableAppHeartBeat (session : in TpSessionID) : void
changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : void

Method

enableAppHeartBeat()

With this method, the framework registers at the client application for heartbeat supervision of itself.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.
fwInterface : in IpHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
session : in TpSessionID

Identifies the heartbeat session.
Method

disableAppHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session : in TpSessionID

Identifies the heartbeat session.
Method

changeTimePeriod()

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.
session : in TpSessionID

Identifies the heartbeat session.
8.3.4 Interface Class IpAppHeartBeat

Inherits from: IpInterface.
The Heartbeat Application interface is used by the Framework to supervise the Application. The return of the TpResult is interpreted as a heartbeat response.

	<<Interface>>

IpAppHeartBeat

	

	send (session : in TpSessionID) : void

Method

send()

This is the method the framework uses in case it supervises the client application. The sender must raise an exception if no result comes back after a certain, user-defined time..

Parameters

session : in TpSessionID

Identifies the heartbeat session.
8.3.5 Interface Class IpHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the client application. Since the APIs are inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of the TpResult is interpreted as a heartbeat response.

	<<Interface>>

IpHeartBeatMgmt

	

	enableHeartBeat (duration : in TpDuration, appInterface : in IpAppHeartBeatRef) : TpSessionEndedCause
disableHeartBeat (session : in TpSessionID) : void
changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : void

Method

enableHeartBeat()

With this method, the client application registers at the framework for heartbeat supervision of itself.

Returns <session> : Identifies the heartbeat session. In general, the application has only one session. In case of framework supervision by the client application (see the application interfaces), the application may maintain more than one session.

Parameters

duration : in TpDuration

The duration in milliseconds between the heartbeats.
appInterface : in IpAppHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Returns

TpSessionEndedCause
Raises

TpCommonExceptions,P_INVALID_SESSION_ID
Method

disableHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session : in TpSessionID

Identifies the heartbeat session.
Raises

TpCommonExceptions,P_INVALID_SESSION_ID
Method

changeTimePeriod()

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.
session : in TpSessionID

Identifies the heartbeat session.
Raises

TpCommonExceptions,P_INVALID_SESSION_ID
8.3.6 Interface Class IpHeartBeat

Inherits from: IpInterface.
The Heartbeat Framework interface is used by the client application to supervise the Framework.

	<<Interface>>

IpHeartBeat

	

	send (session : in TpSessionID) : void

Method

send()

This is the method the client application uses in case it supervises the framework. The sender must raise an exception if no result comes back after a certain, user-defined time.

Parameters

session : in TpSessionID

Identifies the heartbeat session. In general, the application has only one session.
Raises

TpCommonExceptions,P_INVALID_SESSION_ID
8.3.7 Interface Class IpAppLoadManager

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

	<<Interface>>

IpAppLoadManager

	

	queryAppLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void
queryLoadRes (loadStatistics : in TpLoadStatisticList) : void
queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
resumeNotification () : void
suspendNotification () : void

Method

queryAppLoadReq()

The framework uses this method to request the application to provide load statistics records for the application or for individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the application or the services for which load statistic records should be reported. If this parameter is not an empty list, load statistics records of the specified services are returned, otherwise the load statistics record of the application is returned.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Method

queryLoadErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework which have been registered for load level notifications) this method is invoked on the application.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Method

resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition.

Parameters

No Parameters were identified for this method

Method

suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

8.3.8 Interface Class IpLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. To handle responses and reports, the client application developer must implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

	<<Interface>>

IpLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void
queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void
queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void
queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
registerLoadController (serviceIDs : in TpServiceIDList) : void
unregisterLoadController (serviceIDs : in TpServiceIDList) : void
resumeNotification (serviceIDs : in TpServiceIDList) : void
suspendNotification (serviceIDs : in TpServiceIDList) : void

Method

reportLoad()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.
Raises

TpCommonExceptions
Method

queryLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework or for individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an empty list, load statistics records of the specified services are returned, otherwise the load statistics record of the framework is returned.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions,P_INVALID_SERVICE_ID,P_SERVICE_NOT_ENABLED
Method

queryAppLoadRes()

The client application uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.
Raises

TpCommonExceptions
Method

queryAppLoadErr()

The client application uses this method to return an error response to the framework that requested the application's load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpCommonExceptions
Method

registerLoadController()

The client application uses this method to register to receive notifications of load level changes associated with the framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and SCFs to be registered for load control. To register for framework load control only, the serviceIDs is null.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID
Method

unregisterLoadController()

The client application uses this method to unregister for notifications of load level changes associated with the framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which load level changes should no longer be reported. The framework is designated by a null value.
Raises

TpCommonExceptions,P_INVALID_SERVICE_ID
Method

resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications associated with the framework and/or with individual services used by the application; e.g. after a period of suspension during which the application handled a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which the sending of notifications of load level changes by the framework should be resumed. The framework is designated by a null value.
Raises

TpCommonExceptions,P_INVALID_SERVICE_ID,P_SERVICE_NOT_ENABLED
Method

suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications associated with the framework and/or with individual services used by the application; e.g. while the application handles a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which the sending of notifications by the framework should be suspended. The framework is designated by a null value
Raises

TpCommonExceptions,P_INVALID_SERVICE_ID,P_SERVICE_NOT_ENABLED
8.3.9 Interface Class IpOAM

Inherits from: IpInterface.
The OAM interface is used to query the system date and time. The application and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of of the OSA APIs.

	<<Interface>>

IpOAM

	

	systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

Method

systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Returns

TpDateAndTime
Raises

TpCommonExceptions,P_INVALID_TIME_AND_DATE_FORMAT
8.3.10 Interface Class IpAppOAM

Inherits from: IpInterface.
The OAM client application interface is used by the Framework to query the application date and time, for synchronisation purposes.This method is invoked by the Framework to interchange the framework and client application date and time.

	<<Interface>>

IpAppOAM

	

	systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

Method

systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the application. The application responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework.
Returns

TpDateAndTime
8.4 Event Notification Interface Classes
8.4.1 Interface Class IpAppEventNotification

Inherits from: IpInterface.
This interface is used by the services to inform the application of a generic service-related event. The Event Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the Event Notification interface is obtained.

	<<Interface>>

IpAppEventNotification

	

	reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void
notificationTerminated () : void

Method

reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
Method

notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method

8.4.2 Interface Class IpEventNotification

Inherits from: IpInterface.
The event notification mechanism is used to notify the application of generic service related events that have occurred.

	<<Interface>>

IpEventNotification

	

	createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID
destroyNotification (assignmentID : in TpAssignmentID) : void

Method

createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the application to define the event required.
Returns

TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
Method

destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_ASSIGNMENT_ID
===============================Next changed section===================================

12 Framework-to-Service Interface Classes

12.1 Service Registration Interface Classes
Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with the Framework. Services are registered against a particular service type. Therefore service types are created first, and then services corresponding to those types are accepted from the Service Suppliers for registration in the framework. The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property values" for the service. The service discovery functionality described in the previous section enables the service supplier to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative applications. They are described below. Note that these methods cannot be invoked until the authentication methods have been invoked successfully.

12.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

	<<Interface>>

IpFwServiceRegistration

	

	registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID
announceServiceAvailability (serviceID : in TpServiceID, serviceFactoryRef : in service_registration::IpSvcFactoryRef) : void
unregisterService (serviceID : in TpServiceID) : void
describeService (serviceID : in TpServiceID) : TpServiceDescription
unannounceService (serviceID : in TpServiceID) : void

Method

registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications . A service-ID is returned to the service supplier when a service is registered in the Framework. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type and a set of named property types that may be used in further describing this service (i.e., it restricts what is acceptable in the servicePropertyList parameter). If the string representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioral, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. An example of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If an attempt is made to assign a dynamic property value to a readonly property, then the P_READONLY_DYNAMIC_PROPERTY exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID,P_PROPERTY_TYPE_MISMATCH,P_DUPLICATE_PROPERTY_NAME,
P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVICE_TYPE,P_MISSING_MANDATORY_PROPERTY
Method

announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service factory is instantiated at a particular interface. This method informs the framework of the availability of "service factory" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager"instance per service instance. Each service implements the IpSvcFactory interface. The IpSvcFactory interface supports a method called the createServiceManager(application: in TpClientAppID, serviceManager: out IpServiceRefRef). When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
serviceFactoryRef : in service_registration::IpSvcFactoryRef

The interface reference at which the service factory of the previously registered service is available.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID,P_INVALID_INTERFACE_TYPE
Method

unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the "service-ID" which was originally returned by the Framework in response to the registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
Method

describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the service , and the properties that describe this service.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Returns

TpServiceDescription
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
Method

unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the service ID is still associated with it. Applications currently using the service can continue to use the service but no new applications should be able to start using the service. Also, all unused service tokens relating to the service will be expired. This will prevent anyone who has already performed a selectService() but not yet performed the signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
12.2 Service Factory Interface Classes
The IpSvcFactory interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

12.2.1 Interface Class IpSvcFactory

Inherits from: IpInterface.
	<<Interface>>

IpSvcFactory

	

	createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList) : IpServiceRef

Method

createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will be configured for the client application using the properties agreed in the service level agreement.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties form a part of the service level agreement. An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
Returns

IpServiceRef
Raises

TpCommonExceptions,P_INVALID_PROPERTY
===============================Next changed section===================================

B.9
All Interfaces

All methods on IpApp interfaces no longer throw exceptions.

All methods on the other interfaces throw TpCommonExceptions and individual, identified exceptions

All methods now return void or the former out parameter.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Ultan Mulligan, ETSI PTCC

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

