3GPP TSG SA WG5 (Telecom Management) Meeting #115	S5-17xyzr
16-20 October 2017, Busan, Korea	revision of S5A-17xabc

Source:	Ericsson	
Title:	pCR 28.530 Overview of of use cases and requirements for management of network slicing
Document for:	Discussion
Agenda Item:	6.4.3
1	Decision/action requested
Discussion paper requested to be endorsed
2	References
[bookmark: _Hlk494122276][1]	3GPP TR 28.801 Study on anagement and orchestration of network slicing for next generation network
[2]	3GPP TS 28.530 v0.1.0
	
3	Rationale
The study for management and orchestration of network slicing for next generation network [1] has identified management functions that are used for the creation and management of network slice instances. Here the needed concept UC Network Slices are discussed.
3.1	Functional view
The management functions are the CSMF (Communication Service Management Function), the NSMF (Network Slice Management Function) and, the NSSMF (Network Slice Subnet Management Function), as shown in Figure 1.
[image:]
Figure 1: The management functions for network slice management
Each function has a defined role as described in [1] and each function supports business level use cases to enable an operator (network operator or service provider) to manage a network slice instance during its lifecycle.
3.1	Use cases
The operator or the CSMF of the operator interacts with the NSMF. The following use cases describe this interaction:
1) Create a network slice instance
2) Activate a network slice instance
3) Supervise a network slice instance
4) Report performance of a network slice instance
5) Modify a network slice instance
6) De-activate a network slice instance
7) Terminate a network slice instance
8) Subscribe to NSMF notifications
9) Unsubscribe to NSMF notifications
10) Query network slice instance status
11) Read network slice instance attributes

To satisfy the use cases the NSMF interacts with each of the NSSMFs that is responsible for their part (network slice subnet Instance) of the network slice instance. The following use cases describe this interaction:
1) Create a network slice subnet instance
2) Activate a network slice subnet instance
3) Supervise from a network slice subnet instance
4) Report performance of a network slice subnet instance
5) Modify a network slice subnet instance
6) De-activate a network slice subnet instance
7) Terminate a network slice subnet instance
8) Subscribe to NSSMF notifications
9) Unsubscribe to NSSMF notifications
10) Query network slice subnet instance status
11) Read network slice subnet instance attributes

The use cases for network slicing as discussed in [1] have an underlying pattern this is best described via a consumer – producer model, where the consumer sends a request to the producer and the producer responds to the request and ultimately delivers (or decides it cannot deliver) what is required. Since the producer (NSMF) relies on other producers (NSSMFs) the completion of a request depends on many factors.
3.1	Use case pattern
The use case patterns are based on a consumer-producer paradigm. For the use cases for network slice management the consumer can be the CSMF or a person in the Operators’ organization. The producer can be the NSMF, the NSMF manages all network slices that fall under the responsibility of the Operators’ organization. For the use cases for network slice subnet management the consumer is the NSMF (the same NSMF that is the producer for the network slice management) and the producer is the NSSMF.
There are 3 basic patterns identified for the use cases:
1) Use case pattern for operations (see figure 2, 3 and 4)
2) Use case pattern for notifications (see figure 5)
3) Use case pattern for query and read (see figure 6 and 7)

[image:]
Figure 2: Create and terminate object instance pattern
Create object instance
Consumer requests creation of an object instance by supplying the object instance information (see interaction 1). Producer replies indicating the request is accepted or rejected (see interaction 2). In the former case, Producer provides the identifier for the object instance to be created. In the latter case Producer provides the reject reason. Producer sends notification indicating successful creation of the object instance or failure (see interaction 3). Producer provides the reason of the failure.
Terminate object instance
Consumer requests termination of an object instance by supplying the object instance id information (see interaction 4). Producer replies indicating the request is accepted or rejected (see interaction 5). Producer provides the reject reason. Producer sends notification indicating successful termination of the object instance or failure (interaction 6). Producer provides the reason of the failure.

[image:]
Figure 3: Modify object instance pattern
Modify object instance
Consumer requests modification of an object instance by supplying the object instance id and modification (see interaction 1). Producer replies indicating the request is accepted or rejected (see interaction 2). Producer provides the reject reason. Producer sends notification indicating successful modification of the object instance or failure (see interaction 3). Producer provides the reason of the failure.

[image:]
Figure 4: Activate and de-activate object instance pattern
Activate object instance
Consumer requests activation of an object instance by supplying the object instance id (see interaction 1). Producer replies indicating the request is accepted or rejected (see interaction 2). Producer provides the reject reason. Producer sends notification indicating successful activation of the object instance or failure (see interaction 3). Producer provides the reason of the failure.

De-activate object instance
[bookmark: _GoBack]Consumer requests de-activation of an object instance by supplying the object instance id (see interaction 4). Producer replies indicating the request is accepted or rejected (see interaction 5). Producer provides the reject reason. Producer sends notification indicating successful de-activation of the object instance or failure (see interaction 6). Producer provides the reason of the failure.

[image:]
Figure 5: Subscribe and unsubscribe to notifications pattern
Notifications
Consumer requests creation of a subscription to receive notifications indicating the kinds of notifications wanted with a filter (see interaction 1). Producer replies indicating the request is accepted or rejected (see interaction 2). In the former case, Producer provides the subscription id. In the latter case, Producer provides a reason for rejecting the request.
Producer sends notification carrying the kinds of information wanted (see interaction 3).
Consumer requests termination of a subscription by supplying the subscription id (see interaction 4). Producer replies indicating the request is accepted or rejected (see interaction 5). In the former case, Producer provides the subscription id. In the latter case, Producer provides the reject reason.

[image:]
Figure 6: Query status request pattern.
Query
Consumer sends query to Producer by supplying object instance id (see interaction 1). Producer replies with status information (see interaction 2).

[image:]
Figure 7: Read request pattern.
Read
Consumer sends read request to Producer by supplying object instance id and attribute (see interaction 1). Producer replies with the attribute value (see interaction 2).

The pattern for subscribe and unsubscribe to notifications is used to allow the consumer to receive notifications that are of interest to the consumer, such as alarm information, operation completed information, and performance information.
The pattern for query is to allow a consumer to find out status information of a request. The status information of a request may be needed for long lasting operation requests. The consumer does not know how in advance long a request can take and assess if a request is completed or not. A notification may get lost and the consumer may never know when a request is completed without the ability to query the producer.

4	Detailed proposal
The use cases and requirements are introduced by individual pCR’s for both network slice and network slice subnet, to be included in TS 28.530 [2]:
pCR’s for the network slice use cases and requirements:
pCR S5-175xxx	Use case and requirement for create a network slice instance
pCR S5-175xxx	Use case and requirement for activate a network slice instance
pCR S5-175xxx 	Use case and requirement for deactivate a network slice instance
pCR S5-175xxx	Use case and requirement for supervise a network slice instance
pCR S5-175xxx	Use case and requirement for report performance of a network slice instance
pCR S5-175xxx	Use case and requirement for modify a network slice instance
pCR S5-175xxx	Use case and requirement for terminate a network slice instance
pCR S5-175xxx	Use case and requirement for subscribe to NSMF notifications
pCR S5-175xxx	Use case and requirement for unsubscribe to NSMF notifications
pCR S5-175xxx	Use case and requirement for query network slice instance status
pCR S5-175xxx	Use case and requirement for read network slice instance attributes

pCR’s for the network slice subnet use cases and requirements:
pCR S5-175xxx	Use case and requirement for create a network slice subnet instance
pCR S5-175xxx	Use case and requirement for activate a network slice subnet instance
pCR S5-175xxx	Use case and requirement for deactivate a network slice subnet instance
pCR S5-175xxx	Use case and requirement for supervise a network slice subnet instance
pCR S5-175xxx	Use case and requirement for report performance of a network slice subnet instance
pCR S5-175xxx	Use case and requirement for modify a network slice subnet instance
pCR S5-175xxx	Use case and requirement for terminate a network slice subnet instance
pCR S5-175xxx	Use case and requirement for subscribe to NSSMF notifications
pCR S5-175xxx	Use case and requirement for unsubscribe to NSSMF notifications
pCR S5-175xxx	Use case and requirement for query network slice subnet instance status
pCR S5-175xxx	Use case and requirement for read network slice subnet instance attributes

image4.png
producer;

.

1: activatel consumer reference, object instance id)
2 reply(accepted with request id, or rejected with reason)
3: notify(consumer reference, request id, subsciption id, object instance id, activation successful or failed with reason)

4 de-activate(consumer reference, object instance id)

5: reply(accepted with request id, or rejected with reason)

6: notify(consumer reference, request id, subscrption id, object instance id, de-actvation successful or failed with reason]

image5.png
ubscibe(consumer reference, filter)

producer;

2 reply(accepted with subscription id o rejected with reason)

3: notify(consumer reference, subscription id, information

4 unsubscribe consumer reference, subscription id)

5: reply(accepted or rejected with reason)

image6.png
1: query(consumer reference, object instance id)

producer;

2 reply(status information |

image7.png
1: read| consumer reference, object instance id, attribute)

producer;

2 reply(attribute, attributevalue]

!

image1.png
CSMF

NSMF

NSSMF

image2.png
producer;

1: create(consumer reference, object instance information)
2: reply(accepted with object instance id and request id, or rejected with reason)
3: notify(consumer reference, request id, subscription id, object instance id, creation successful or failed with reason |
G

4: terminate(consumer reference, object instance id)

5: reply(accepted with request.id or rejected with reason)

6: notify(consumer reference, request-id, subscription id, termination successful or failure with reason)

image3.png
1: modify(consumer reference, object instance i, modification |

producer;

p

2: reply(accepted with object instance id and request id, or rejected with reason)

3: notify(consumer reference, request id, object instance id, successful modification or failure with reason

wl

