3GPP TSG SA WG5 (Telecom Management) Meeting #115
S5-175221
16-20 October 2017, Busan, Korea
revision of S5A-17xabc
Source:
Ericsson
Title:
Alternative solutions for filtering and scoping using hyperlinks
Document for:
Approval, Information, Discussion

Agenda Item:
6.5.5
1
Decision/action requested

The group is kindly asked to discuss and approve this proposal.
2
References

[1]
3GPP TR 32.866 Study on RESTful HTTP-based Solution Set (SS)
3
Rationale

At the meeting in Sofia Antipolis the group discussed Richardson Maturity Model (RMM) level ambition for the Restful HTTP and the understanding is that the minimum level should be level 2 with an ambition to have level 3 where appropriate. In RMM level 3 the use of hyperlinks is a requirement and its use is described in clause 7.5.14.
The design patterns READ operations as described in clause 7.5.3 and Filtering and scoping as described in 7.5.13 show examples to address queries to multiple resources. However there are no examples how these design patterns work with hyperlinks.

Clause 7.5.14 describes a solution using links (hypertext) for discovery of resources but is lacking examples. Examples are provided below.
The following examples demonstrate an RMM level 3 alternative using the Hypertext Application Language (HAL) syntax for linking and embedding subresources.

In the first example, the target object only is requested as follows:
GET /objects/1 HTTP/1.1
Host: example.org

Content-Type: application/json

{
 "id": "1",
 "_links": {

 "self": { "href": "/objects/1" },

 "children": { "href": "/objects/1/children" }
 }

}

As may be seen, links are provided including a link to the child objects.

The second example embeds the children in the body payload using the embed query parameter.
GET /objects/1?embed=children HTTP/1.1
Host: example.org

Content-Type: application/json

{
 "id": "1",

 "_links": {

 "self": { "href": "/objects/1" },

 "children": { "href": "/objects/1/children" }
 }

 "_embedded {

 "children": […]

 }

}

This approach may be extended to include additional links as necessary to support different scopes.

The following example demonstrates the use of a URI template (RFC 6570) to specify a query to include nested children to a depth of three levels.
GET /objects/1?embed=nthLevelChildren(3) HTTP/1.1
Host: example.org

Content-Type: application/json

{
 "id": "1",

 "_links": {

 "self": { "href": "/objects/1" },

 "children": {"href": "/objects/1/children"}
 "nthLevelChildren": {"href": "/objects/1/children?level={n}"}
 }

 "_embedded": {

 "nthLevelChildren": […]

 }

}

Multiple embeds may be combined as in the following example.

GET /objects/1?embed=children,nthLevelChildren(3) HTTP/1.1
Host: example.org

Content-Type: application/json

{
 "id": "1",

 "_links": {

 "self": { "href": "/objects/1" },

 "children": {"href": "/objects/1/children"}
 "nthLevelChildren": {"href": "/objects/1/children?level={n}"}
 }

 "_embedded": {

 "children": […],

 "nthLevelChildren": […]

 }

}

This proposal is to include the RMM 3 level examples using hyperlinks in the appropriate places in the document.
4
Detailed proposal

	1st Change

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

HAL
Hypertext Application Language
HTTP
Hypertext Transfer Protocol (HTTP)
JSON
JavaScript Object Notation
	2st Change

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[x]
IETF RFC 6570 “URI Template” (https://tools.ietf.org/rfc/rfc6570.txt)
	3rd Change

7.5.3
Design pattern for READ operations (scope: multiple resource)

READ operations for multiple resources shall be mapped to the HTTP GET method. For the selection of multiple resources two approaches are possible:

1. With GET …{root}/{ClassName} it is possible to retrieve all resources of type class name below the root resource.

2. Other resource selection mechanisms can be realized with the query part of the URI, where scoping and filtering constructs can be placed, see clause 7.5.13.

Example:

The resource representations of all Part class instances shall be read

GET /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json
HTTP/1.1 200 OK
Content-Type: application/json

[

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "2"

 },
 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "53"

 }

]
Example:

The base object and the complete subtree below it shall be retrieved.
GET /Ensemble/1?scopeType=BASE_SUBTREE HTTP/1.1
Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK
Content-Type: application/json

[

 {

 "id":"z",

 "type":"baseStation"

 },

 {

 "Part":

 [

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "2"

 },

 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "53"

 }

]

 }

]

Also for this example, another representation including the Ensemble class is given.

HTTP/1.1 200 OK
Content-Type: application/json

{

 "Ensemble":

 [

 {

 "id":"z",

 "type":"baseStation"
 },

 {

 "Part":

 [

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "2"

 },

 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "53"

 }

]

 }

]

}
Alternatively, an RMM level 3 solution using hyperlinks is described in clause 7.5.14

	4th Change

7.5.13
Design pattern for scoping and filtering

The hierarchical path component in the URI serves to identify a resource, called the base resource. The scope defines the resources below the base resource or at the same level as the base resource. A subset of the scoped resources can be selected by applying one or multiple filtering criteria. The scoped resources that match the filter criteria are those on which the HTTP operation is being applied to.

The query component in the URI is used for scoping and filtering. The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI.

In RFC3986 [a3] the query component is defined as

query = *(pchar / "/" / "?")

A filter language is not defined. In ETSI GS NFV SOL 003 the following filter language is specified

simpleFilterExpr := <attrName>["."<attrName>]*"."<op>"="<value>

filterExpr := "?"<simpleFilterExpr>["&"<simpleFilterExpr>]*
op := "eq" | "neq" | "gt" | "lt" | "gte" | "lte" | "cont" |
 "ncont"
attrName := string
with

	Operator <op>
	Meaning

	<attrName>.eq=<value>[,<value>]*
	Attribute equal to one of the values in the list

	<attrName>.neq=<value>[,<value>]*
	Attribute not equal to any of the values in the list

	<attrName>.gt=<value>
	Attribute greater than <value>

	<attrName>.gte=<value>
	Attribute greater than or equal to <value>

	<attrName>.lt=<value>
	Attribute less than <value>

	<attrName>.lte=<value>
	Attribute less than or equal to <value>

	<attrName>.cont=<value>[,<value>]*
	Attribute contains (at least) one of the values in the list

	<attrName>.ncont=<value>[,<value>]*
	Attribute does not contain any of the values in the list

Editor’s note: It is ffs if this filter language shall be adopted.
The scope can be defined as follows:

…?scopeType={scopeTypeValue}&scopeLevel={scopeLevelValue}

scopeTypeValue = "BASE_ONLY" / "BASE_NTH_LEVEL" / "BASE_SUBTREE" / "BASE_ALL"

scopeLevelValue = *DIGIT
The scope types are defined in TS 32.602 [a6], and repeated here for convenience

· BASE_ONLY: select the base object, value of Level is ignored
· BASE_NTH_LEVEL: select all nth level (indicated by the value of Level) subordinate objects
· BASE_SUBTREE: select the base object and all of its subordinates down to and including the nth level
· BASE_ALL: select the base object and all of its subordinates; value of Level is ignored
Another simpler but also less rich possibility to select certain resources is to invoke a HTTP method not on a leaf resource but on a resource before the leaf object

Example 1:
This URI scopes the leaf resource with the id=c, which is the normal case where one resource is selected.
…/Ensemble/1/Part/c

Example 2:
This URI scopes all three instances of Part with the id=a, id=b and id=c

…/Ensemble/1/Part

Example 3:
This URI scopes the instance of Ensemble with id=1

…/Ensemble/1

Example 4:
This URI scopes all instances of Ensemble, in this case hence only the instance with id=1

…/Ensemble

Alternatively, an RMM level 3 solution using hyperlinks is described in clause 7.5.14

	5th Change

7.5.14
Design pattern for links
Links (hypertext) are used on Level 3 of the Richardson Maturity Model. Links are used to traverse the resource space and discover features of the resources without the need to consult external documents. Links are returned by the server as part of the resource representation. The following examples use the Hypertext Application Language (HAL) syntax for linking and embedding resources.
Examples:
This example demonstrates how hypermedia controls (links) may be used to page through a collection of resources.
{

"_links": {

 "self": { "href": "http://example.org/my_api/v1/pages/127" },

 "next": { "href": "http://example.org/my_api/v1/pages/128" },

 "prev": { "href": "http://example.org/my_api/v1/pages/126" }

}

}

This example shows how a child resource may be linked.
GET /objects/1 HTTP/1.1
Host: example.org

Content-Type: application/json

{
 "id": "1",
 "_links": {

 "self": { "href": "/objects/1" },

 "children": { "href": "/objects/1/children" }
 }

}

This example embeds the child resources in the body payload using the embed query parameter.

GET /objects/1?embed=children HTTP/1.1
Host: example.org

Content-Type: application/json

{
 "id": "1",

 "_links": {

 "self": { "href": "/objects/1" },

 "children": { "href": "/objects/1/children" }
 }

 "_embedded {

 "children": […]

 }

}

This approach may be extended to include additional links as necessary to support different scopes.

The following example demonstrates the use of a URI template (RFC 6570) to specify a query to include nested child resources to a depth of three levels.

GET /objects/1?embed=nthLevelChildren(3) HTTP/1.1
Host: example.org

Content-Type: application/json

{
 "id": "1",

 "links": {

 "self": { "href": "/objects/1" },

 "children": {"href": "/objects/1/children"}
 "nthLevelChildren": {"href": "/objects/1/children?level={n}"}
 }

 "embedded": {

 "nthLevelChildren": […]

 }

}

Multiple embeds may be combined as in the following example.

GET /objects/1?embed=children,nthLevelChildren(3) HTTP/1.1
Host: example.org

Content-Type: application/json

{
 "id": "1",

 "links": {

 "self": { "href": "/objects/1" },

 "children": {"href": "/objects/1/children"}
 "nthLevelChildren": {"href": "/objects/1/children?level={n}"}
 }

 "embedded": {

 "children": […],

 "nthLevelChildren": […]

 }

}

