Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4#97
 S4-180183
Fukuoka, Japan 5th – 9th Feb 2018
revision of S4-180078
Agenda item:
8.10
Source:
Qualcomm Incorporated
Title:
CoAP Block-wise Transfer for File Repair
Document for
Discussion and Agreement
1 Introduction

During SA4#96, Expway’s proposal on the use of byte-range indication in CoAP request messages for file repair, in Tdoc S4-171206 [1] was discussed and agreed to be included in the Technical Report for MBMS for IoT, TR 26.850. That document describes two options for the UE/CoAP client to indicate the desired byte range of repair data to be returned by the file repair/CoAP server. The first makes use the existing CoAP option Uri-Query, as described in RFC 7252 [2], to specify the byte range, and in the second option, a new CoAP option Range (along with the corresponding CoAP Option number) is defined to convey the desired byte range.
This contribution proposes a different method for file repair via CoAP. It involves the use of the Block option associated with block-wise transfer as defined in RFC 7959 [3], by the UE, to identify and request the desired repair data. Two alternatives are described, which are aligned with the methodology of byte-range file repair using conventional HTTP web servers, but with the difference that missing symbols is directly mapped to Blocks by the UE in the request(s) for repair data using the block-wise transfer option, and whereby the HTTP protocol for file repair transactions, as specified in TS 26.346, is replaced by CoAP.
2 Block-wise Transfer for File Repair
2.1
General
Two alternatives for block-wise based file repair via CoAP are described in this contribution. They are motivated by and modeled after similar options in byte-range based file repair, as described in TS 26.346, clause 9.3.6.2. Specifically, they are based on the two options available to the BM-SC for delivering FEC encoding symbols using the download delivery method:
· Sending of source symbols followed by repair symbols, and

· Sending of repair symbols exclusively.
For the sake simplicity in the following examples, it is assumed that sub-blocking is not used in the broadcast transmission of FEC symbols. Also, it is assumed that the original file object is stored on a standard CoAP server that supports file repair, and which is FEC-unaware.
2.2
Block-wise File Repair Method A
In the example as shown below in Figure 1, broadcast delivery of the file object comprises sending of the source symbols followed by repair symbols. It is assumed that the file object for broadcast delivery to MBMS-capable IoT devices is a firmware update file whose size is 6.7 Kbytes. The BM-SC will apply AL-FEC in the transmission of the file object, encoded as source symbols, along with the repair symbols generated from the file, as a sequence of ALC/ FLUTE packets, each with payload size of 1024 bytes.

[image: image1.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 13

Legend:

Source symbols

Repair symbols

Padding bytes

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Source

Symbol 0

Source

Symbol 15

reception loss

reception loss

Blk_4

Repair

Symbol 35

Figure 1 – MBMS download delivery of 6.7-kByte file employing 256-byte FEC symbols carried in FLUTE packets with payload size of 1024 bytes; sending of source + repair symbols
In FLUTE delivery of the file, an integer number of FEC encoding symbols are contained in the 1024-byte packet payload – in this example, four 256-byte FEC symbols are carried in each FLUTE packet. Loss in reception of any FLUTE packet, due to for example transmission errors, would result in a loss of four symbols (for packets not containing padding bytes). The UE will track the number of symbols it has successfully acquired, and determine the specific additional symbols needed for successful FEC decoding. As shown in the above example, FEC symbols which map logically to Blocks 1, 5 and 6 of the source file (along with some repair symbols) were not received, corresponding to the loss of source symbols with ESIs (Encoded Symbol IDs) 4-7 and 20-26. Suppose that in this example, eleven additional symbols are needed to enable full file recovery. The MBMS client will determine that source symbols with ESIs 4-7, 20-23, and 24-26, corresponding to Blocks 1 and 5, and a portion of Block 6, will need to be acquired via unicast file repair. Subsequently, the UE will employ CoAP’s Block2 option to request, via the GET method, block-wise transfer from the server of those symbols, as shown in Figure 2.

[image: image2.emf]CoAP Server

(Firmware Update)

CoAP Client

0.01 CON [0xdb09]

(Token 0x102)

{B2, 1/0/6}

2.05 ACK [0xdb09]

(Token 0x102)

{B2, 1/1/6}

0.01 CON [0xdb10]

(Token 0x103)

{B2, 5/0/6}

2.05 ACK [0xdb10]

(Token 0x103)

{B2, 5/1/6}

0.01 CON [0xdb11]

(Token 0x104)

{B2, 6/0/6}

2.05 ACK [0xdb11]

(Token 0x104)

{B2, 6/0/6}

Figure 2 – Block-wise transfer request and response for retrieval of FEC symbols contained in Blocks 1 and 5 at repair server
Note that in the example message flow in Fig. 2, and according to the semantics in RFC 7959 [3], the third line of the request indicates, by ‘B2’, the use of the ‘Block2’ option in the request, and whereby the notation ‘1/0/6’ correspond to the triplet [NUM/M/SZX]. The NUM field represents the block number of the payload requested for return in the response (‘1’, ‘5’ and ‘6’ in this example), the M bit has no meaning and must be set to zero, and SZX = 6 is a variable for use in computing the actual block size for use in block-wise transfer, as given by 2(SZX + 4), or 1024 bytes. Due to the use of the Confirmable (CON) message in the request with message ID as shown inside the bracket [], reliability is ensured for the associated UDP transport by the returned ACK message, with the same Message ID, in which the requested resource is piggybacked.
2.3
Block-wise File Repair Method B
In the example as shown below in Figure 3, only repair symbols are sent in the broadcast delivery of the file object. As in the previous case, a 6.7 Kbyte file is broadcast to (IoT) UEs, the BM-SC applies AL-FEC in the transmission of the file object, and the encoded repair symbols are sent as a sequence of ALC/ FLUTE packets, each with payload size of 1024 bytes.

[image: image3.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 14

Legend:

Repair symbols

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Repair

Symbol 0

Repair

Symbol 15

reception loss

reception loss

Blk_4

Blk_8

Figure 3 – MBMS download delivery of 6.7-kByte file employing 256-byte FEC symbols carried in FLUTE packets with payload size of 1024 bytes; sending of repair symbols only

In this example, it can be seen that FEC symbols which map logically to Blocks 1, 5, 6 and 7 were not received, resulting in the loss of repair symbols with ESIs (Encoded Symbol IDs) 4-7 and 20-31. Similar to the previous example, it is assumed that eleven additional symbols are needed to enable full file recovery, but since only repair symbols were transmitted/received, file recovery can be achieved at the UE by acquiring any eleven source symbols, ensured to be distinct from the already-received repair symbols. In this case, it would the simplest for the MBMS client, acting as the CoAP client, to request the first eleven source symbols, i.e., the initial 2048 bytes of the file stored in the repair server. In other words, the UE will employ CoAP’s Block2 option to request, via the GET method, block-wise transfer by the server of the first three 1024-byte blocks (Blocks 0, 1 and 2), from the repair server, as shown in Figure 4.

[image: image4.emf]CoAP Server

(Firmware Update)

CoAP Client

0.01 CON [0xdb09]

(Token 0x102)

{B2, 0/0/6}

2.05 ACK [0xdb09]

(Token 0x102)

{B2, 0/1/6}

0.01 CON [0xdb10]

(Token 0x103)

{B2, 1/0/6}

2.05 ACK [0xdb10]

(Token 0x103)

{B2, 1/1/6}

0.01 CON [0xdb11]

(Token 0x104)

{B2, 2/0/6}

2.05 ACK [0xdb11]

(Token 0x104)

{B2, 2/1/6}

Figure 4 – Block-wise transfer request and response for retrieval of FEC symbols contained in Blocks 0, 1 and 2 at repair server
2.4
Comparison of block-wise transfer file repair methods
Method A vs. method B for block-wise transfer based file repair, as described in Sections 2.1 and 2.2, bear resemblance to the broadcast delivery of source and repair symbols vs. repair symbols only methodologies, respectively, and associated unicast procedures for byte-range based file repair as specified in TS 26.346. As copied from that document, broadcast transmission of source and repair symbols is shown below in Fig. 5A, and broadcast transmission of only the repair symbols is shown in Fig. 5B.

[image: image6.png]Broadcastsymbols

{nternet - .:._] l

Received broadcastsymbols

Blue = received broadcast source symbols.
Red = received broadcastrepair symbols.
White = missed or lost broadcast symbols

[image: image7.png]Broadcastrepairsymbols only

nternet I:.:.] I

Received broadcast symbols

Red = received broadcast repair symbols
Whi nissed or lost broadcast symbols

Figure 5A – Broadcast delivery of source and repair
 Figure 5B – Broadcast delivery of repair symbols only
symbols (as copied from Tdoc S4-120046)

 (as copied from Tdoc S4-120046)
The Block options (‘Block1’ and ‘Block2’ as defined in RFC 7959 [3]) enable the repair server to be stateless, i.e. it does not maintain state on what the client has previously retrieved, nor is it aware of the status of the file repair process – e.g., when the client has finished, whether the client has decided to abort the file repair procedure (for example, due to change in the ETag value of the file resource), etc. Complexity of server operation in support of file repair requests from the UE is the same, regardless of whether the client is retrieving contiguous or non-contiguous blocks, or the relative position of the requested repair data within the source file stored at the server (for example, at the beginning or near the end of the file, or somewhere in between). The reason being that the server is handling the request/response for one block at a time, and it maintains no state information on prior transactions.
On the other hand, broadcast transmission of only repair symbols makes the MBMS client’s processing task a little easier, as it need not track which source symbols are missing in generating request for that specific set, which would be required if source symbols were broadcast. However, the client still has to make two separate CoAP requests, as done in Method A. Another potential advantage of repair-only broadcast as compared to broadcast of source symbols, is the expected better caching efficiency (higher “hit ratio’) should proxy caches be employed in the unicast network, since every client that performs file repair can be designed to request repair data (as contiguous symbols) starting with the very first CoAP Block of the source file.

3 Proposal
It is proposed to add the above text in Sections 2 to TR 26.850, Sec. 7.3 (“Solutions for File Repair Using CoAP”), as an additional mechanism for post-reception file repair.
4 References
[1]
Tdoc SP-171206, “Pseudo-CR Solutions for File Repair procedure using CoAP”, Discussion Paper contribution from Expway for SA4#96, Nov 2017.
[2]
IETF RFC 7252, “The Constrained Application Protocol (COAP)”.
[3]
IETF RFC 7959, “Block-Wise Transfers in the Constrained Application Protocol (CoAP)”.
[image: image8.png]

[image: image9.png]

- 5/5 -

Legend:

Repair symbols

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Repair

Symbol 0

Repair

Symbol 15

reception loss

reception loss

Blk_4

Blk_8

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

_1578275963.vsd
0.01 CON [0xdb10]
(Token 0x103)
{B2, 5/0/6}

2.05 ACK [0xdb10]
(Token 0x103)
{B2, 5/1/6}

_1579432235.vsd
0.01 CON [0xdb10]
(Token 0x103)
{B2, 1/0/6}

2.05 ACK [0xdb10]
(Token 0x103)
{B2, 1/1/6}

_1576409176.vsd
0.01 CON [0xdb10]
(Token 0x103)
{B2, 1/0/6}

2.05 ACK [0xdb10]
(Token 0x103)
{B2, 1/1/6}

Legend:

Source symbols

Repair symbols

Padding bytes

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Source

Symbol 0

Source

Symbol 15

reception loss

reception loss

Blk_4

Repair

Symbol 35

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

