3GPP TSG-SA WG4 Meeting #97 	S4-180097
Fukuoka, Japan, 5.- 9. Feb. 2017

	
[bookmark: _GoBack]Source:	Ericsson LM[footnoteRef:1] [1: 	Thorsten Lohmar]

Title:	fMP4 based F-U Instantiation
Document for:	Discussion and Approval
Agenda Item:	FLUS

1 Introduction
The revised Live Uplink Streaming (FLUS) workitem includes some bullets around guidelines, which are:
· to describe relevant non-IMS-based user plane instantiations based on standardized technology and to describe how they can be bound through the FLUS Control API
· on how this uplink may be relayed into downlink services such as MTSI, PSS and MBMS.
· Any additional guidelines on the usage of FLUS

This document provides a description around an fMP4 based F-U instantiation, which can be transported via today’s HTTP 1.1 base infrastructure and also further HTTP2 and QUIC based infrastructures.
Note, the description separates between the used format and the protocol.
The introduced format is based on ISO-BMFF segments, which contain one or a few samples such a video frame. The ISO-BMFF segment is called a FLUS chunk in this description. A FLUS chunk is very similar to a CMAF chunk (IEO/IEC 23000-19) with the following differences.
· CMAF chunks are “addressable objects”. “CMAF chunks are the smallest CMAF media object that can be encoded, and they can be referenced as addressable media objects.” (Clause 7.3.2.3 in ISO/IEC 23000-19). In this FLUS instantiation, the FLUS chunk is typically sent as continuous stream using HTTP chunked delivery or HTTP2 streams, i.e. individual FLUS chunks are only implicitly addressable through in-sequence delivery.
· CMAF defined codec constrains. This FLUS instantiation does not introduce codec constraints.

Note, that the ‘styp’ box in CMAF chunks is optional. The CMAF compatibility brand for CMAF Chunks (‘cmfl’) can only be provided with the ‘styp’ box. For FLUS chunks with HTTP 1.1 chunked delivery or with HTTP2 delivery, the ‘styp’ box is typically not present.
Separation between format, protocol and configuration and example.

3	Proposal

It is proposed to add the following text into TR 26.939 (“Guidelines on the Framework for Live Uplink Streaming”)
X. FLUS Media instantiation for fragmented MP4 with HTTP
X.1	Introduction
This section is only relevant when selecting a FLUS media instantiation of type “fMP4” (fragmented MP4).
ISO/IEC 14996-12 defines a generic media file format, which can be used for streamed media. It can be used for on-demand streaming and for live streaming. ISO/IEC 14996-12 can also be used as recording format, where a movie is recorded in a fragmented movie file (cf. Annex A.8 of ISO/IEC 14996-12).
When the FLUS media instantiation with fragmented MP4 is selected, the FLUS sink accepts a media stream, which are formatted as fragmented movie file according to ISO/IEC 14996-12 (e.g. Annex A.8). The FLUS source continuously creates and appends FLUS Chunks to a FLUS session.
A FLUS Chunk is an ISO-BMFF Segment as defined in ISO/IEC 14496-12 Clause 8.16. One or more media streams may be configured for the FLUS Session. HTTPS is used as streaming protocol.
A FLUS chunk is very similar to a CMAF chunk format (ISO/IEC 23000-19), except that it is not required to be directly addressable.

X.2 FLUS fMP4 Format
A FLUS fragment movie file starts with initialization information, i.e. a movie box (‘moov’), followed by zero or more FLUS Chunks. A FLUS Chunk is a movie fragment box (‘moof’) with its associated media data and optionally other boxes. FLUS chunk may or may not contain Service Access Points. Typically, only a single codec sample is encapsulated in an FLUS chunk.
The initialization information (‘moov’) contains information around the number of tracks, the used codec, codec configuration and optionally static metadata for the upstreamed movie file. Note, media tracks like audio or video tracks, may be separated into independent movie files and logically associated through the FLUS session.

[image:]
Figure X-1: Illustration of Segmented and Continuous Chunk Profiles (with mapping to HTTP resources).
The fragmented MP4 FLUS media instantiation supports two format FLUS chunk profiles:
· Segmented: THE FLUS Chunks of the fragmented movie file are individual and addressable resources. Each FLUS Chunk starts with an ‘styp’ box, followed by other boxes.
· Continuous: THE FLUS Chunks of the fragmented movie file are continuously appended to a larger resource. FLUS chunks do not contain ‘styp’ boxes.

X.3 Usage of HTTP Protocol to carry FLUS media
The fragmented MP4 FLUS media instantiation focuses on the usage of the HTTP 1.1 and HTTP 2 protocol for uplink. Usage of secure connections is strongly recommended. Note, the ‘Continuous’ profile may not require HTTP and could be carried directly on TCP connection.
The FLUS sink may offer a simple HTTP PUT or POST interface for upload. Alternatively, the FLUS sink allows the FLUS source to use WebDAV [RFC5689] to manage content.
The FLUS sink exposes the Push URL element, which is provides the base URL for the ingestion. All FLUS source appended sub-paths to the base URL belong to the same FLUS session.
Example, the FLUS sink offers the Push URL “http://sink.operator.com/sessionxyz/” via F-C. This allows the FLUS source to ingest sessions with multiple media components. The FLUS source appends additional path parts to complete the URL for the media. For example, the FLUS source sends audio to http://sink.operator.com/sessionxyz/audio-180130.mp4 and video to http://sink.operator.com/sessionxyz/video-180130.mp4.
When the FLUS source starts the media session, the FLUS source streams first the initialization information for the movie file. After that, the FLUS source streams FLUS Chunks as the FLUS chunks become available.
In case of HTTP 1.1, the FLUS source uses HTTP chunked transfer encoding. Usage of HTTP chunked transfer encoding is indicated in the HTTP request header for the upload. The FLUS source finalizes the HTTP resource by sending a zero-size HTTP Chunk.
In case of HTTP2, the FLUS source is simply omitting the Content-Length header. The FLUS source finalizes the HTTP resource by closing the HTTP2 stream using the END_STREAM flag in a frame.
When using TCP as transport, the usage of a persistent TCP connection for HTTP resource up streaming is recommended. The TCP buffer level is controlled by means of the TCP_NOTSENT_LOWAT socket option that is available in multiple operating systems.
An example of a recommended congestion control is LEDBAT [RFC6817], other congestion control schemes, which strive for a low network queue delay, are currently under development in IETF.

X.3 Rate adaptation considerations
The FLUS source may adapt the media bitrate to fit to the currently available link bitrate.
A media streaming solution is preferably rate adaptive in order to cope with changing network conditions. A FLUS source, creating an fMP4 stream, can also change the bitrate as needed.
In order to allow for rate adaptation, the FLUS sink should delay the stream for a configurable duration. The FLUS sink uses this reception queue (see figure below) to recover the encoder frame rate, i.e. to compensate network jitter. The FLUS source needs to know or needs to provision this FLUS sink delay in order to apply rate adaptation techniques for example to provide the best possible quality at minimal frame losses (i.e. due to late FLUS Sink arrival). Such a configuration is provided with the Pipeline Description element.

[image:]
Figure 1: Rate Adaptation
A FLUS source can monitor the upstreaming progress. Existing transport protocols such as TCP employ a rate adaptation algorithm, which adjusts the TCP throughput to the available link bitrate. A rate adaptation logic can measure the bitrate at which the TCP sender is draining the frame queue. Further, the FLUS source can monitor, how quickly a frame is upstreaming (first byte of the frame until the last byte of the frame).
There is no need to standardize the detailed rate adaptation algorithm. However, the FLUS sink should support a reception queue and recovery of the encoder frame rate.
Other transport protocols such as QUIC may also be used to re-use rate control and retransmission schemes.

X.2.5 FLUS sink configuration
Editor’s Note: The FLUS Sink may announce the supported HTTP version as part of the FLUS Sink capabilities.
Editor’s Note: The FLUS sink may announce the existence of a reception queue for recovering the encoder frame rate (i.e. removing any network jitter).
Editor’s Note: The binding between input media stream and processing and distribution configuration is ffs. For each incoming media stream, there should be a clear specification on the subsequent handling, e.g. transcoding or distribution URL handling.
Table X-1: Additional FLUS Session properties when FLUS Media is set to “fMP4”
	Property Name
	Property Description
	CI
	CO
	GI
	G
O
	U
I
	U
O
	T
I

	Pipeline Description
	The object contains a description of the forwarding behaviour of received media components to the processing and/or distribution sub-functions.
The HTTPS URL or HTTPS base URL is used as identification of the media stream and the selection of the processing pipeline.
When URLs are absolute URLs, then the URLs shall contain the Push URL value, as provided by the FLUS sink. When the URLs are relative URLs, then the URLS are relative to the Push URL, which is provided by the FLUS sink.
When multiple media components are multiplexed into a single media stream, then the component type (e.g. audio or video) or the track id should be used as additional identifier.
	
	
	
	O
	O
	
	

	Profile
	An enumerate for the upstreaming ingest profile. Valid values are: Segmented, Continuous
	Type
	Unit
	Default

	String
	None
	“Continuous”

	
	
	
	
	
	
	

	Push URL
	A resource locator for ingesting media segment(s) using HTTPS via F-U. The FLUS source may create additional sub-resources using WebDAV procedures.
This is a read-only property managed by the FLUS Sink and only present when “FLUS Media” is set to “fMP4.
	Type
	Unit
	Default

	String
	None
	“”

	
	
	
	M
	O
	
	

X.2.5 Example

An example from a wireshark capture is depicted below. The FLUS source uses here HTTP PUT together with HTTP chunked transfer encoding to an Apache2 server. Th eApache2 server was configured with a webdav server module.
The first HTTP Chunk contains the ‘ftyp’ box and the initialization information. The first HTTP chunk is of size ‘27d’. The first FLUS chunk (containing here only ‘moof’ and ‘mdat’ boxes) is set afterwards as single HTTP chunk. The size of the second HTTP chunk is 2beb.

PUT /webdav/dbg-DirCam-20180119-092131.mp4 HTTP/1.1
Transfer-Encoding: chunked
Content-Type: video/avc
User-Agent: Ericsson Research
Host: 192.168.1.141
Connection: Keep-Alive
Accept-Encoding: gzip
Scheme: http

27d
....ftypisom....isomavc1...emoov...lmvhd......[
..[
..@...................................trak...\tkhd......[
..[
..@..............emdia... mdhd......[
..[
........U......%hdlr........vide............Tlos.....minf....vmhd...............$dinf....dref............urlstbl....stsd...........|avc1.............................H...H...&avcC.B.(....gB.(..@x.
...E8...h.C.....stts............stsc............stsz................stco...........(mvex... trex........................
2beb
...Pmoof....mfhd...........8traf....tfhd...8.......d..+....@....trun...........X..+.mdat..+.e...@...&(....}.....O.. 3..;.}.......]..}........}..}.....?.G.W.Q......'..x....>

<cut>
..Dns.@#.v'......8..L#.....{..G......?."8@F.....4F...B.B.'....7.#.C..8.<p.....8...D.0G...a.LG.#.x..>.>...X`C.^...?8....?.P....
..<. mN#.......O?V..%..:.,#....q.z...V..b....U....7.%hK.xpC...".....x....|Gb;..7
..ui..@.0Gb..#t!..w....Y..;.z..@!a..]Z...8LF.
0

HTTP/1.1 201 Created
Date: Fri, 19 Jan 2018 08:21:42 GMT
Server: Apache/2.4.18 (Ubuntu)
Location: http://192.168.1.141/webdav/dbg-DirCam-20180119-092131.mp4
Access-Control-Allow-Origin: *
Content-Length: 291
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>201 Created</title>
</head><body>
<h1>Created</h1>
<p>Resource /webdav/dbg-DirCam-20180119-092131.mp4 has been created.</p>
<hr />
<address>Apache/2.4.18 (Ubuntu) Server at 192.168.1.141 Port 80</address>
</body></html>

When the FLUS source terminates the HTTP Request body using a zero size HTTP chunk, the HTTP server provides the HTTP response.

		Page: 1/7

		Page: 7/7
image3.emf
flus_webdav1.pcap

flus_webdav1.pcap

image1.emf
otherboxesHTTP ResourceotherboxesInitialization‘moov’Movie Fragment(‘moof’ + ‘mdat’)HTTP ResourceMovie Fragment(‘moof’ + ‘mdat’)Movie Fragment(‘moof’ + ‘mdat’)otherboxesInitialization‘moov’Movie Fragment(‘moof’ + ‘mdat’)HTTP ResourceMovie Fragment(‘moof’ + ‘mdat’)HTTP ResourceProfile ‘Segmented’Profile ‘Continuous’HTTP ChunkHTTP ChunkHTTP ChunkHTTP Chunk‘styp’otherboxesMovie Fragment(‘moof’ + ‘mdat’)HTTP Resource‘styp’FLUS ChunkFLUS Chunk

image2.emf
EncoderTXFrameQueueTransmission Progress MonitorBitrateChangesRaw InputEncoded Frames @ framerateUpstreamedFramesTXReception BufferRecovered FramerateFLUS SinkFLUS Source3GPP NetworkStoragePPOptional

