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******* Change 1 ********

Test Methodology:
In Figure 1 below, we show a block diagram that explains how we validate the fixed point STL2018 basic operator implementation against a reference floating point implementation.  A data generator generates floating point notation data values that are then converted into fixed point notation and these are input to the design under test (DUT) implementation of the STL2018 basic operators’ implementation.  The same fixed point data is converted into floating point notation, and then input to a reference floating point implementation of the STL2018 basic operators.  The fixed point output of the DUT is converted to floating point notation, and then compared against the reference floating point implementation output and an error value is generated and logged.
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Figure 1: Block diagram illustrating how the fixed point implementation is validated against a floating point reference implementation of the extended STL2009 basic operators. 
In the following sections, we report the test results for an example basic operator, Mpy_32_16_1. 
Test results for basic operator Mpy_32_16_1:

We used the setup in figure 1 for four different types of data:

· Random input numbers

· A sweep from a negative number to a positive number

· A piecewise sweep from a negative number to a positive number

· A custom input

Figures 2, 3, 4 and 5 illustrate the results of the test for the above four different data types.  The errors between the fixed point implementation and floating point implementation are extremely small thereby validating the fixed point implementation.
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Figure 2: Test results for basic operator Mpy_32_16_1 using random input.  The error between the fixed point output and floating point output is very small.   
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Figure 3: Test results for basic operator Mpy_32_16_1 using a sweep input.  The error between the fixed point output and floating point output is very small.  
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Figure 4: Test results for basic operator Mpy_32_16_1 using a piecewise sweep input.  The error between the fixed point output and floating point output is very small.  
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Figure 5: Test results for basic operator Mpy_32_16_1 using a user defined custom input.  The error between the fixed point output and floating point output is very small.  

For a complete report of the framework used, as well as the results of the test, please see the following files in the attachment “TestResultsAndTestFrameworkOfExtendedBASOPValidation.zip” 
“Baseop_tst_frmwork.zip” – Test framework package.  For details of this package, and how to run it, please see the README file in the zipped package.  For a summary of the results and the details of the test setup, please see the excel file “Tst_framework.xlsx” available inside the “doc” folder of this zipped package.
“precision_abs_err_report.csv” details the test results and reports the average and bits-in-error summary for all the 67 basic operators.

“W_mult_32_32.xlsx” and “Mpy_32_16_1.xlsx” show the details of the tests for two example basic operators.

Based on the results reported in “precision_abs_err_report.csv”, we conclude that the fixed point implementation of the extended basic operators all pass against the reference floating point implementation of the same extended basic operators.

******* End of Change 1 ********
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