
3GPP TSG-SA4 Meeting #97
S4-180022
Fukuoka, Japan, 05-09 February 2018

	CR-Form-v11.2

	PSEUDO CHANGE REQUEST

	

	
	26.973
	CR
	xxx
	rev
	x
	Current version:
	0.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Evaluation of merits of an alternative EVS implementation using extended STL2009 Basic Operators

	
	

	Source to WG:
	Cadence Design Systems Inc., VoiceAge Corporation

	Source to TSG:
	S4

	
	

	Work item code:
	FS_BASOP
	
	Date:
	2017-11-15

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Addition of the test results of validating the extended basic operators

	
	

	Summary of change:
	Addition of the test results of validating the extended basic operators in Section 4.2

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

******* Change 1 ********

Test Methodology:
In Figure 1 below, we show a block diagram that explains how we validate the fixed point STL2018 basic operator implementation against a reference floating point implementation. A data generator generates floating point notation data values that are then converted into fixed point notation and these are input to the design under test (DUT) implementation of the STL2018 basic operators’ implementation. The same fixed point data is converted into floating point notation, and then input to a reference floating point implementation of the STL2018 basic operators. The fixed point output of the DUT is converted to floating point notation, and then compared against the reference floating point implementation output and an error value is generated and logged.
[image: image1.jpg]Wordé4 /
Word32/
Word16

REF Floating
point
Basicoperator
implementation

Double/Float

Double/float

Absolute /
percentage
/ bits error

—

Double/Float

Figure 1: Block diagram illustrating how the fixed point implementation is validated against a floating point reference implementation of the extended STL2009 basic operators.
In the following sections, we report the test results for an example basic operator, Mpy_32_16_1.
Test results for basic operator Mpy_32_16_1:

We used the setup in figure 1 for four different types of data:

· Random input numbers

· A sweep from a negative number to a positive number

· A piecewise sweep from a negative number to a positive number

· A custom input

Figures 2, 3, 4 and 5 illustrate the results of the test for the above four different data types. The errors between the fixed point implementation and floating point implementation are extremely small thereby validating the fixed point implementation.
[image: image2.png]inputl

o 200 200 600 800 1000

0 dut output
83]
8o
-01
33 i i i L
0 200 400 600 00 1000
ref output
83]
o1
09
B ‘ j : ;
"o 200 400 600 800 1000
error

200 200 600 800 1000

Figure 2: Test results for basic operator Mpy_32_16_1 using random input. The error between the fixed point output and floating point output is very small.
[image: image3.png]inputl

o 200 200 600 800 1000

input2

200 200 600 800 1000

dut output

200 400 600 800 1000

ref output

o 200 200 600 800 1000

le-8 error

o 200 200 600 800 1000

Figure 3: Test results for basic operator Mpy_32_16_1 using a sweep input. The error between the fixed point output and floating point output is very small.

[image: image4.png]inputl

11
Sbdoooo
s

o 200 200 600 800 1000

input2

Sbdocoo
sy

o 200 200 600 800 1000

dut output

o 200 400 600 800 1000

ref output

200 200 600 800 1000

error

200 200 600 800 1000

Figure 4: Test results for basic operator Mpy_32_16_1 using a piecewise sweep input. The error between the fixed point output and floating point output is very small.

[image: image5.png]0 200 200 500 200 000
dut output

0 200 400 600 00 1000
ref output

0 200 200 500 200 000

le-8 error

F S B

E | ' H 1 L H 1

0 200 400 600 00 1000

Figure 5: Test results for basic operator Mpy_32_16_1 using a user defined custom input. The error between the fixed point output and floating point output is very small.

For a complete report of the framework used, as well as the results of the test, please see the following files in the attachment “TestResultsAndTestFrameworkOfExtendedBASOPValidation.zip”
“Baseop_tst_frmwork.zip” – Test framework package. For details of this package, and how to run it, please see the README file in the zipped package. For a summary of the results and the details of the test setup, please see the excel file “Tst_framework.xlsx” available inside the “doc” folder of this zipped package.
“precision_abs_err_report.csv” details the test results and reports the average and bits-in-error summary for all the 67 basic operators.

“W_mult_32_32.xlsx” and “Mpy_32_16_1.xlsx” show the details of the tests for two example basic operators.

Based on the results reported in “precision_abs_err_report.csv”, we conclude that the fixed point implementation of the extended basic operators all pass against the reference floating point implementation of the same extended basic operators.

******* End of Change 1 ********

Page: 1/5

Page: 5/5

