Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 Meeting #96
S4-171109
Albuquerque, USA, 13-17 November 2017

Agenda item:
8.7
Source:
Intel

Title:
Results on some decoder tools for FCNBE
Document for
Discussion and Agreement

1 Introduction
3GPP standardized both a fixed point version (26.442 [1]) and floating point version (26.443 [2]) of EVS. In recent years, floating point audio processing chains has proliferated, increasing the interest in floating point codec implementations. SA4 started a study item [3] on the feasibility of non bit-exact conformance process for floating-point implementation that would allow conforming implementations to be used in all scenarios acceptable for bit-exact implementations of fixed-point version (TS 26.442) and floating-point version (TS 26.443).

In [4] various methods based on signal analysis were proposed to assess the correctness of EVS decoder implementation. This contribution presents results using these methods.

This contribution also investigates the effect of a code change on EVS decoder, and the sensitivity of the methods.

2 Compiler / Platform option

Two compilers/platforms have been used for this study. In both cases the code from 26.443 (Version C80) has been compiled with various optimization levels to evaluate the sensitivity of the conformance tools.
2.1 Icc compiler on Atom platform

This configuration is the same that was used to report result with POLQA verification [6]. Three levels of optimization were used:

Opt_None: the code was compiled without any optimization.

Opt_Quality: the code was compiled with various optimization level depending on the file and functions to provide best computational performance while insuring quality.

Opt_Agg: the code was compiled with a very aggressive setting for computation performance, without checking on the possible consequences on quality
2.2 Gcc compiler on Xeon platform
In this configuration, three level of optimization were used.
O0: the code was compiled without any optimization.

O2: the code was compiled with normal optimization level for speed and memory
O2+avx2: the code was compiled to take advantage of vector extensions math routine and can lead to variation in the arithmetic results. The avx2 option in gcc is –march=avx2
Compared to the process used in Section 2.1, all files are compiled with the same option, no file dependent optimization.

3 Methods

The reference PCM signals are taken from the decoded floating point test vector library of 26.444. The PCM signal under test are obtained by running the floating point bit-stream included in 26.444 through the Decoder under Test.

[image: image1.emf]Bitstreams (*.cod)

Ref Decoder

Decoder under Test

Tool(s)

Reference signal

Signal under Test

Figure 1: Flow diagram for the decoder test

All metrics are calculated on the reference PCM signal [image: image3.png]

 and the PCM signal under test [image: image5.png]X7 (t)

 based on 20ms frames. The frames should be time aligned to the codec framing meaning any delay introduced by the EVS implementation should be reverted. For this the delay compensation in EVS should not be turned OFF The number of samples [image: image7.png]

 for a 20ms frame size is defined by [image: image9.png]N = f.-0.02

, where [image: image11.png]

 represents the sampling rate.

Three metrics are computed based on Root Mean Square, Weighted Signal to Noise Ratio and Spectral distortion.

3.1 RMS Threshold

The RMS method is derived from the decoder conformance used in ISO/IEC 14496-26. The RMS error is calculated for each 20ms frame and compared to a threshold according to

[image: image13.png]m—
20-1o gm(Lagr—sror)) < Tos

With [image: image15.png]Trms = 20.logso (2 ‘(;1))

 with [image: image17.png]

3.2 Weighted SNR
The segmental SNR method is derived from the decoder conformance used in ISO/IEC 14496-26. The SNR metric is extended by a weight of the current energy in the frame to avoid any low SNR values for very quiet frames. For each 20ms segment, the following values need to be calculated:

· Energy of reference signal:[image: image19.png]—y a2
Erer = X X255

· Energy of test signal:[image: image21.png]

· Noise energy:[image: image23.png]

· Reference signal power in dB: [image: image25.png]

· Test signal power in dB: [image: image27.png]_ {10[0910 (E%) if Epsr > 0
—160, else

· Weighted signal to noise ratio: [image: image29.png]WSNR =
R = Prer- 10l0gyo (EEE1E29)
oiErs

, with [image: image31.png]EPS = 1075

As EVS is a switched codec containing a LPC based speech coder and a MDCT based transform coder, the SNR values vary significantly depending on the used coding mode. Therefore, a constant threshold for the weighted SNR is not suitable but instead, a reference value per frame and test vector is used. These thresholds vectors were provided by Fraunhofer. The WSNR should be compared against the thresholds by

· [image: image33.png]WSNR(f,v) < Tenr(f,v) - Prgr(f, V)

where [image: image35.png]

 is a 20ms frame index and [image: image37.png]

 is the test vector index

3.3 Spectral Distortion
The spectral distortion method, based on COSH distance [5], can be conducted on a 20ms frame base by the following steps

· Calculate the absolute FFT spectrum of [image: image39.png]

 and [image: image41.png]X7sT

 using a Hanning window

· [image: image43.png]32768 @y _ j2mnk|
2790 3 Whann () Xgge(n) e H | fork=0.N -1

Xrgr (k) =

· [image: image45.png]32768 vy _j2nnk|
e SN Wnamn(n) xpsr(n) - e TR | fork=0.N -1

Xrsr(k) =

· with [image: image47.png]Ioto(ot
Whann(n) = 2 — 2 cos (25 (n— 1))

 [image: image49.png]forn=0..N—1

For all spectral bins calculated the distortion d according to the flowing pseudo code

cnt=0

for k=1..N/2-1
 if ([image: image51.png]Xoez(k)

==0 && [image: image53.png]Xrsr(k)

==0)

 X_Y = 1;

 Y_X = 1;

 else
 if ([image: image55.png]Xoez(k)

==0)

 X_Y = 0;

 Y_X = 2;

 else if ([image: image57.png]Xrsr(k)

==0)

 X_Y = 2;

 Y_X = 0;

 else
 X_Y = ([image: image59.png]Xoez(k)

 * [image: image61.png]Xoez(k)

) / ([image: image63.png]Xrsr(k)

 * [image: image65.png]Xrsr(k)

);

 Y_X = ([image: image67.png]Xrsr(k)

 * [image: image69.png]Xrsr(k)

) / ([image: image71.png]Xoez(k)

 * [image: image73.png]Xoez(k)

);

 end
 end

 COSH = (X_Y + Y_X - 2)/2;

 d = d + COSH;

 cnt = cnt+1;
end

d = d/cnt;
The distortion value [image: image75.png]

 is to be compared against a threshold, e.g. [image: image77.png]d < Tsp

In this study TSD is set to 6.6
3.4 Analysis flow
The three metrics are computed in a specific order, as show if figure 2.

[image: image78.emf]For All frames

RMS < Trms

Compute RMS

Frame pass

Yes

Compute WSNR No

WSNR < Twsnr

Yes

Compute SD

SD < Tsd

No

Yes

Frame Fail

No

Figure 2: Flow chart for decoder tool
In each file if 99.5% of the frames pass, then the test signal is considered equivalent to the reference signal.
4 Results
For this test, the test vectors from 26.444 are used. In all it represents 2675 test vectors.

Tables 2 and 3 show the number of failed files in each cases for the two systems under test:

Table 2: Result for icc and Atom system

	Compiler option
	Opt_None
	Opt_Quality
	Opt_Agg

	Number failed vectors
	0
	0
	167

Table 3: Result for gcc and Xeon system

	Compiler option
	-o0
	-o2
	-o2-avx2

	Number failed vectors
	0
	0
	83

The results from Table 2 are in correlation with the results obtained with the POLQA verification [6]. Both approaches flag the non-conformant decoder implementation.
The results of Table 3 show similar result as Table2 in the sense that change in the arithmetic precision or execution will be flagged. However by detailed analysis of the 83 failed vectors, it is seen that the majority of them are 32 kHz and 48 kHz noisy speech files test vectors. The cause of such outliers is under investigation.

5 Robustness to code changes
A new contribution [7] highlighted an issue with the noise masking generation of EVS decoder. A proposed fixed lead to similar perceptual results, but the seed of the random generator was changed. This new code was tested using the gcc+xeon system. The results are reported in Table 4.
 Table 4: Result for gcc and Xeon system with code change
	Compiler option
	-o0
	-o2
	-o2-avx2

	Number failed vectors
	235
	235
	274

It can be seen that even the non-optimization version of the code flagged this difference in the decoder output.

This demonstrates that the proposed tool is capable of distinguishing subtle change in the code.
6 Conclusion

The provided results indicate that signal based metrics can be used to discriminate conformant from non-conformant EVS decoder floating-point implementation. This contribution shows that simply a change in the seed of random generator will be flagged by the tool. These results increase confidence that an effective conformance test for EVS floating-point implementation can be designed.
The source proposes to include the results of chapter 4 in the study item TR 26.843.
7 References

[1] 3GPP TS 26.442: “EVS ANSI-C source code (fixed-point)”
[2] 3GPP TS 26.443 “EVS ANSI-C source code (floating-point)”

[3] S4-170747. “Study on EVS Float Conformance Non Bit-exact”, June 2017

[4] S4-170841. “FCNBE: Decoder Methods”, Intel, Fraunhofer IIS, October 2017
[5] Proc. IEEE Digital Signal Processing Workshop. “Comparison of distance measures in discrete spectral modelling”, B. Wei and J. D. Gibson, Oct. 2000
[6] S4-170283. “Results with EVS float standard”. Intel. Fraunhofer IIS, April 2017

[7] S4-171091. “Further results with EVS float standard on macOS”, Apple, November 2017
- 5/6 -

Bitstreams (*.cod)
Ref Decoder
Decoder under Test
Tool(s)
Reference signal
Signal under Test

For All frames
RMS < Trms
Compute RMS
Frame pass
Yes
Compute WSNR
No
WSNR < Twsnr
Yes
Compute SD
SD < Tsd
No
Yes
Frame Fail
No

