Page 1

3GPP TSG-SA4 Meeting #93
S4-170507
Busan, Korea, 24-28 April 2017

update to S4-170463
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	26.347
	CR
	0001
	rev
	3
	Current version:
	14.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:

	Service API for Transparent User Service

	
	

	Source to WG:
	Samsung Electronics Ltd., Co., Qualcomm Incorporated

	Source to TSG:
	S4

	
	

	Work item code:
	AE_enTV-S4
	
	Date:
	2017-01-17

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-14

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	In order to enable the delivery of TV services over MBMS, API support to enable the delivery of content from the BM-SC to the application is required. This complements the interface that is offered to the content provider to ingest its contents.

	
	

	Summary of change:
	This change adds API support for the Transparent delivery method.

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	4.2, 4.3.5, 7.6, B.4

	
	

	
	Y
	N
	
	

	Other specs
	X
	
	 Other core specifications

	TS 26.347 CR 0002, TS 26.346 CR 0576, TS 26.346 CR 0580

	affected:
	
	X
	 Test specifications
	

	(show related CRs)
	
	X
	 O&M Specifications
	

	
	

	Other comments:
	It is strongly recommended to implement TS 26.347 CR 0002 before this CR 0001.

	===== AUTONUM CHANGE =====

4.2
Network Architecture and MBMS User Services (Informative)

According to TS 26.346 [5], three distinct functional layers are defined for the delivery of an MBMS-based service:

1)
Bearers: Bearers provide the mechanism by which IP data is transported. MBMS bearers as defined in 3GPP TS 23.246 [4] and 3GPP TS 22.146 [2] are used to transport multicast and broadcast traffic in an efficient one-to-many manner and are the foundation of MBMS-based services. MBMS bearers may be used jointly with unicast PDP contexts in offering complete service capabilities.

2)
Delivery Method: When delivering MBMS content to a receiving application one or more delivery methods are used. The delivery layer provides functionality such as security and key distribution, reliability control by means of forward-error-correction techniques and associated delivery procedures such as file-repair, delivery verification. Four delivery methods are defined, namely download, streaming, transparent and group communication. The present document does not address group communication.

3)
User service: The MBMS User service enables applications. Different applications impose different requirements when delivering content to MBMS subscribers and may use different MBMS delivery methods.

MBMS User Service architecture is based on an MBMS client on the UE side and a BM-SC on the network side. Details about the BM-SC functional entities are given in figure 4 of TS 26.346 [5].

The BM-SC and UE may exchange service and content related information either over point-to-point bearers or MBMS bearers whichever is suitable. Among others, the following MBMS procedures are defined in TS 26.346 [5]:

-
User Service Discovery / Announcement providing service description material to be presented to the end-user as well as application parameters used in providing service content to the end-user.

-
MBMS-based delivery of data/content from the BM-SC to the UE over IP multicast or over IP unicast.

-
Associated Delivery functions are invoked by the UE in relation to the MBMS data transmission. The following associated delivery functions are available:
-
File repair for download delivery method used to complement missing data.
	===== AUTONUM CHANGE =====

4.3.5
MBMS Transparent User Service

MBMS Transparent User Service provides the MAA with interfaces to access MBMS transparent delivery services as defined in TS 26.346 [5]. The MAA may request start or stop any available transparent service.
The Service API is defined in clause 6.4 using the the serviceType set to TRANSPARENT or TRANSPARENT-ROM for the service request.
TRANSPARENT refers to any transport service that is declared as a transparent service by the BMSC, if the Service Announcement includes a required capability '24', i.e. the signal for the “MBMS User Service Discovery / Announcement Profile for Transparent Delivery Services” as documented in Annex L.5 of TS26.346 [5].
TRANSPARENT-ROM refers to any transparent service that is also a Receive-Only Mode (ROM) Service, if the ROM service is signalled in the User Service Description.
The SDP provided in the sdpURI should be used together the Packet Data interface as documented in clause 7.6.
	===== AUTONUM CHANGE =====

7.6
Packet Data Interface
The MBMS Client should provide an interface such that the data delivered using the MBMS Transparent delivery method can provide a packet stream that complies with the SDP provided in the value of the sdpURI.
The MBMS Client provides the application with:

-
A SDP that describes the data stream.
 - The network interface from which the data stream can be received. For that purpose, the MBMS Client may forward the packets locally, e.g. through a virtual network interface, or through the network to the client. In such example, the MBMS client is expected to modify the SDP accordingly to provide a session that conforms to the offered SDP.
	==== AUTONUM CHANGE (to be applied on top of change in TS 26.347 CR 0002) ====

B.4
IDL for MBMS RTP streaming delivery Service API

#include "EmbmsCommonTypes.idl"
module PacketService

{

 //Forward Declaration
 interface ILTEPacketServiceCallback;

 /**
 * @name PacketErrorCode
 * @brief List of the errors for Packet service
 */
 enum PacketErrorCode

 {

 PACKET_INVALID_SERVICE, /**< Invalid service ID */
 PACKET_UNKNOWN_ERROR /**< Unknown error */
 MISSING_PARAMETER

 /**< parameter is missing */

NON_SUPPORTED_SERVICE_TYPE /**< non supported service type */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for Packet service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };
 /**
 * @name ServiceType
 * @brief List of service types
 */
 enum ServiceType
 {

 RTP /**< Service Type for RTP */
 TRANSPARENT /**< Service Type for TRANSPARENT */
 TRANSPARENT-ROM

 /**< Service Type for TRANSPARENT and ROM */
 };

 /**
 * @name RegisterPacketAppData
 * @brief Packet Application registration information
 */
 struct RegisterPacketAppData

 {

 string ServiceType; /** The requested service type)

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides
 a platform-specific Application context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name PacketServiceClassList
 * @brief ServiceClass information which the Application is interested in. It is for setPacketServiceClassFilter API.
 */
 typedef sequence<string> PacketServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name PacketServiceInfo
 * @brief Packet service information
 */
 struct PacketServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service availability */
 string sdpUri; /**< SDP URI used by Packet player */

 string interfaceName; /**< The network interface name used by the Packet player to receive the data described in the SDP. */
 EmbmsCommonTypes::Date activeServicePeriodStartTime; /**< The current/next active Packet service start time, when Packet data
 starts being broadcast over the air */
 EmbmsCommonTypes::Date activeServicePeriodEndTime; /**< The current/next active Packet service end time, when Packet data
 stops being broadcast over the air */
 sequence<long> SAIList; /**< Service Area IDs based on current location of the device*/
 };

 /**
 * @name PacketServices
 * @brief List of Packet service info objects
 */
 typedef sequence<PacketServiceInfo> PacketServices;

 /**
 * @name StartPacketServiceData
 * @brief Start Packet service information. It is used by StartPacketService API.
 */
 struct StartPacketServiceData

 {

 string serviceId; /**< Streaming service Id from PacketServiceInfo */
 };

 /**
 * @name StopPacketServiceData
 * @brief Stop Packet service information.
 * It is used by the StopPacketService API.
 */
 struct StopPacketServiceData

 {

 string serviceId; /**< Streaming service ID from PacketServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief Packet service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from PacketServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief Packet service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from PacketServiceInfo */
 };

 /**
 * @name PacketServiceErrorNotification
 * @brief Packet service error information. It is used by the PacketServiceErrorNotification API.
 */
 struct PacketServiceErrorNotification

 {

 string serviceId; /**< Packet service Id from PacketServiceInfo */
 PacketErrorCode errorCode; /**< Packet service error Id */
 string errorMsg; /**< error message */
 };

 /**
 * @name ServiceStalledNotification
 * @brief Packet service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< Packet service ID from PacketServiceInfo */
 StalledReasonCode reason; /**< Packet service stalled reason ID */
 };

 /**
 * @name RegisterPacketResponseNotification
 * @brief Packet Application registeration response information
 */
 struct RegisterPacketResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTEPacketService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current Packet service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerPacketApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterPacketAppData
 @see registerPacketResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerPacketApp(in RegisterPacketAppData regInfo, in ILTEPacketServiceCallback callBack);

 /**
 @name deregisterPacketApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterPacketApp();

 /**
 @name startPacketService
 @brief Start receiving Packet data over broadcast
 @param[in] StartPacketService Parameters for starting the Packet services API
 @pre Application is registered for Packet service
 @see StartPacketServiceData
 @see serviceStarted()
 @see packetServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startPacketService(in StartPacketServiceData serviceInfo);

 /**
 @name stopPacketService
 @brief Stop receiving Packet data over broadcast
 @param[in] StopPacketService Parameters for stoping the Packet services API
 @pre Application is registered for Packet service
 @see serviceStopped()
 @see StopPacketServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopPacketService(in StopPacketServiceData serviceInfo);

 /**
 @name setPacketServiceClassFilter
 @brief Application sets a filter on Packet services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with Packet service
 @see serviceUpdate()
 @see getPacketServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setPacketServiceClassFilter(in PacketServiceClassList serviceClassList);

 /**
 @name getPacketServices
 @brief Retrieves the list of Packet services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] PacketServices List of filtered Packet services
 @pre Application is registered for Packet service and received packetServiceListUpdate notification
 @see PacketServices
 @see packetServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getPacketServices(out PacketServices services);

 };

 interface ILTEPacketServiceCallback

 {

 /**
 @name registerPacketResponse
 @brief The response to the application Packet service register API.
 @param Notification Parameters for registering a Packet response
 @pre Application called registerPacketApp
 @see RegisterPacketResponseNotification
 @see registerPacketApp()
 **/
 void registerPacketResponse(in RegisterPacketResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that Packet service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for Packet service and called startPacketService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that Packet service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for Packet service and called stopPacketService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name packetServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for Packet service and called startPacketService
 @see PacketServiceErrorNotification
 **/
 void packetServiceError(in PacketServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for Packet service stalled notification
 @pre Application is registered for Packet service and called startPacketService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name packetServiceListUpdate
 @brief Notification to application on an update that is available for Packet services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for Packet service.
 @post call getPacketServices()
 **/
 void packetServiceListUpdate();

 };

};
