Page 1

3GPP TSG-SA4 Meeting #93
S4-170322
Busan, Republic of Korea, 24-28 April 2017
	CR-Form-v11.2

	DRAFT CHANGE REQUEST

	

	
	26.347
	CR
	Draft
	rev
	-
	Current version:
	14.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	AE_enTV-S4: Service APIs for TS26.347

	
	

	Source to WG:
	Qualcomm Incorporated

	Source to TSG:
	

	
	

	Work item code:
	AE_enTV-S4
	
	Date:
	2017-04-18

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-14

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Add transport-only mode as defined in stage 2

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

=== CHANGE 1 ===
4.2
Network Architecture and MBMS User Services (Informative)

According to TS 26.346 [5], three distinct functional layers are defined for the delivery of an MBMS-based service:

1)
Bearers: Bearers provide the mechanism by which IP data is transported. MBMS bearers as defined in 3GPP TS 23.246 [4] and 3GPP TS 22.146 [2] are used to transport multicast and broadcast traffic in an efficient one-to-many manner and are the foundation of MBMS-based services. MBMS bearers may be used jointly with unicast PDP contexts in offering complete service capabilities.

2)
Delivery Method: When delivering MBMS content to a receiving application one or more delivery methods are used. The delivery layer provides functionality such as security and key distribution, reliability control by means of forward-error-correction techniques and associated delivery procedures such as file-repair, delivery verification. Four delivery methods are defined, namely download, streaming, transport-only and group communication. The present document does not address group communication.

3)
User service: The MBMS User service enables applications. Different applications impose different requirements when delivering content to MBMS subscribers and may use different MBMS delivery methods.

MBMS User Service architecture is based on an MBMS client on the UE side and a BM-SC on the network side. Details about the BM-SC functional entities are given in figure 4 of TS 26.346 [5].

The BM-SC and UE may exchange service and content related information either over point-to-point bearers or MBMS bearers whichever is suitable. Among others, the following MBMS procedures are defined in TS 26.346 [5]:

-
User Service Discovery / Announcement providing service description material to be presented to the end-user as well as application parameters used in providing service content to the end-user.

-
MBMS-based delivery of data/content from the BM-SC to the UE over IP multicast or over IP unicast.

-
Associated Delivery functions are invoked by the UE in relation to the MBMS data transmission. The following associated delivery functions are available:
-
File repair for download delivery method used to complement missing data.
=== CHANGE 2 ===
4.3.5
MBMS Transport-only User Service

MBMS Transport-only User Service provides the application with interfaces to access MBMS transport-only delivery services as defined in TS 26.346 [5]. The application may request start or stop any available transport-only service.
=== CHANGE 3 ===
6.5
MBMS Transport-only Service API

6.5.1
Introduction

The MBMS RTP streaming delivery Service API provides MBMS Aware Applications with interfaces to manage the reception of RTP services delivered over MBMS RTP streaming delivery services that are built on the Download Delivery Method. This API is intended to support RTP streaming applications.

The IDL for the MBMS RTP streaming delivery Service API is defined in clause B.4.

6.5.2
MBMS Client State Model for RTP-over-MBMS

6.5.2.1
Overview

Figure 6.5.2.1-1 provides an informative client state model in order to appropriately describe the messages on the MBMS RTP streaming delivery service API. Four different states are defined as listed in Table 6.5.2.1-1. State changes may happen based on:

· Calls from the application or the RTP client

· Information provided by the MBMS User Service (USD, schedule, FDT, file complete)

·
Changes in the reception conditions

[image: image1.png]serviceStarted()
serviceStalled()
deregisterRTPApp()
registerRTPApp()

startRTPService()
stopRTPService()

Figure 6.5.2.1-1: State Diagram

Table 6.5.2.1-1 defines states for the MBMS client. Detailed descriptions are provided in the following subclauses.

Table 6.5.2.1-1: States of MBMS Client

	States and Parameters
	Definition

	IDLE
	In this state the MBMS client does not have a registered application and it may not keep the service definition up to date.

For more details see clause 6.5.2.3.

	NON_AVAILABLE
	In this state the MBMS client is not available and an application cannot register with the MBMS client.

	REGISTERED
	In this state the MBMS client has registered the application, it may keep the service definition up to date, and it may be providing file capture services to the application(s).

In this state the MBMS client sends callback notifications to the application.

For more details see clause 6.5.2.3.

	ACTIVE
	In this state the MBMS client provides all services to of the REGISTERED state and also provides the RTP service to the application.

For more details see clause 6.5.2.4.

	STALLED
	In this state the MBMS client provides all services to of the REGISTERED state, but the RTP services is at least temporarily stalled.

For more details see clause 6.5.2.5.

6.5.2.2
MBMS Client Internal parameters

The MBMS client maintains internal parameters as defined in Table 6.5.2.2-1. Note that the parameters are conceptual and internal and only serve for the purpose to describe message generation on the API calls.

Table 6.5.2.2-1: Parameters of MBMS Client for MBMS RTP streaming delivery Service

	Internal Parameters
	Definition

	_app[]
	The MBMS client maintains a parameter set per registered app

	
	_appId
	A unique ID provided by the application and assigned to the app.

	
	_serviceClass[]
	A list of service classes identifying the services the application has access to.

	
	_registrationValidityDuration
	A period of time following the application de-registration over which the MBMS client continues to capture files for the application, see clause.

	
	_service[]
	The MBMS client maintains a parameter list per service. In this context the list is assigned also to one app, but an implementation may share the internal parameter list assigned to a service across multiple apps.

	
	
	_serviceID
	The service ID for a RTP Application service over which the MBMS client collects files for the application.

	
	
	_serviceClass
	The service class associated with the RTP Application service assigned the Service ID.

	
	
	_serviceLanguage
	The language of the service

	
	
	_serviceName[]

 _name

 _lang
	The service name, possibly expressed in different languages.

	
	
	_serviceBroadcastAvailability
	The service broadcast availability for the client. Three different types are defined:

BROADCAST_AVAILABLE – UE is in broadcast coverage

BROADCAST_UNAVAILABLE – UE is outside of broadcast coverage

	
	
	_SDP

_interfaceName

_sdpURI
	The latest SDP associated to the service

The network interface name from which the started MBMS RTP streaming delivery service can be received.

The URI which is provided to the application for initiating the RTP Media Presentation.

	
	
	_sessionSchedule[]

 _start

 _stop
	Documents the session schedule for this session. Only sessionSchedule records should be included for which the value of the _stop time is in the future.

6.5.2.3

MBMS Client Operation in IDLE state

The MBMS client may listen to the User Service Bundle Description and may collect information. However, no binding with the application is in place.

When the registerRTPApp()is invoked, then

1. The MBMS client checks the input parameters for consistency and sets the internal variables:
a)
If the functions of the MBMS client is not accessible, the MBMS client throws a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE result code in the registerRTPResponse() as defined in subclause 6.5.3.3 and abort the following steps and may at least temporarily move in NOT_AVAILABLE state.

b)
If appId is an empty string then the MBMS client throws a MISSING_PARAMETER result code in the registerRTPResponse() as defined in subclause 6.5.3.3 and abort the following steps and stays in IDLE mode. If not, the MBMS client sets the internal variable _appId to the value of the parameter.

c)
The MBMS client adds each entry in the serviceClassList parameter to its _serviceClass[] record. Note that the serviceClassList parameter may contain an empty service class entry. If an empty service class is provided the MBMS client considers the application to be registered with a service class that is also empty and only allow the application to have access to MBMS RTP streaming delivery Application Services that are not associated with a serviceClass (i.e., the USD for these services do not have a serviceClass defined).

d)
On receiving a registerRTPApp() following a deregisterRTPApp(), the MBMS client updates the serviceClassList to its _serviceClass[] record in the same way described for the setRTPServiceClassFilter() method.

e)
If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerRTPApp() interface to send notification of event occurrences to the Application.

2. generates a response registerRTPResponse() as defined in subclause 6.5.3.3 and changes to REGISTERED state as defined in clause 6.5.2.4:

a)
If the MBMS client functions cannot be activated for any reason, especially if the RTP Delivery Application Service API did not find an MBMS client available on the UE on which the application is running, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide a message.

b)
If the application did not provide a mandatory parameter the MBMS client functions cannot be activated, the MISSING_PARAMETER registration response code is sent.

c)
If the MBMS client functions can be activated, then:
i)
the RegResponseCode is set to REGISTER_SUCCESS registration response code;
ii)
a message may be generated.
d)
Sends the response with the above parameters
3. If the MBMS client functions can be activated and the response is sent with a REGISTER_SUCCESS, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching RTP delivery services using the information in the User Service Description (USD). If the response is sent with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, then MBMS client is in NOT_AVAILABLE state. If the response is sent with a MISSING_PARAMETER, then MBMS client is in IDLE state.

If the MBMS client receives the getVersion() API call as defined in clause 6.5.3.13, it shall return version 1.0.

6.5.2.4
MBMS Client Operation in REGISTERED state

For each registered app and the assigned parameters according to Table 6.5.2.2-1, the MBMS client uses the information in the User Service Description as well as its internal state information for the app in _app[] in the service class list _serviceClass[] to collect and keep up-to-date all internal information for the services of interest for the app, i.e. those that are member of any service class for which the application has interest.

For each MBMS user service for which the USD as defined in TS 26.346 [5] is available in the MBMS client for the service classes registered by the application in _serviceClass[] and which is identified as a MBMS RTP streaming delivery service according to the definition in TS 26.346 [5], clause 8, one service record in the internal parameter _service[] is defined in the MBMS client and continuously updated whenever a new USD is available:

· For each userServiceDescription.name element, a (name, lang) pair is generated and added to the _serviceName[] list with _name set to the value of the USD element, and if present, the _lang set to the value of the associated @lang attribute. If no @lang attribute is present, the _lang parameter is set to an empty string.

· If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to _serviceClass. If not present, the _serviceClass is set to an empty string.

· The value of the attribute userServiceDescription@serviceId is assigned to _serviceId.

· If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to _serviceLanguage. If not present, the _serviceLanguage is set to an empty string.

· The SDP metadata fragment referenced by either the r9:sessionDescription element referencing an SDP and conforming to TS 26.346 [5] is extracted by the MBMS client. The contained SDP is stored in the _SDP parameter. The _sdpURI parameter is generated at which location the SDP will be made available. The network interface name from which the RTP data are available is stored in the _interfaceName parameter
· The _serviceBroadcastAvailability is continuously updated set it to BROADCAST_AVAILABLE, if broadcast is available (if the UE is in broadcast coverage of the service), if not, it is set to BROADCAST_UNAVAILABLE (if the UE is NOT in broadcast coverage of the service).
· If the userServiceDescription.schedule element is present then the MBMS client uses the information in the schedule description fragment to generate the internal _sessionSchedule[] list and keep up to date as a result of USD updates. The MBMS client shall only include _sessionSchedule[] records if the _stop value is in the future.
If updates are provided and added to the _service[] parameter, the MBMS client should send a rtpServiceListUpdate() callback as defined in clause 6.5.3.6.

When the getRTPServices() method is received as defined in clause 6.5.3.4, the MBMS client sets the parameters as follows:

· If the _service[] list is empty, the list is empty

· For each MBMS user service in the service[] list, one service record is generated as follows:

-
The value of the attribute _serviceId is assigned to serviceId.

-
The value of the attribute _serviceClass is assigned to serviceClass.

-
The value of _serviceLanguage is assigned to serviceLanguage.

-
For each record in the _serviceName[] one serviceNameList entry is generated and:
-
the name is set to the value _name,

-
the name is set to the value _name.
-
The value of _serviceBroadcastAvailability is assigned to serviceBroadcastAvailability.

-
The _sdpURI is assigned to spdURI.

-
If at least one _sessionSchedule[] record is present then

-
The activeServicePeriodStartTime is set to the value of earliest _start time of any entry in the _sessionSchedule[].

-
The activeServicePeriodStopTime is set to the value of the _stop time of the entry selected earliest start time.

-
If no _sessionSchedule[] record is present:
-
The activeServicePeriodStartTime is set to 0.

-
The activeServicePeriodStopTime is set to 0.

When the setRTPServiceClassFilter() as defined in clause 6.5.3.5 is received, the MBMS client runs the following steps:

· It replaces the internal variable _serviceClass[] with the parameter values provided in serviceClassList.

· The MBMS client dis-associates the service classes previously associated with the MBMS Aware Application that are not included on this list.

· The MBMS client associates the service classes not previously associated with the MBMS Aware Application that are newly included on this list.

· The MBMS client issues a rtpServiceListUpdate() notification as defined in clause 6.5.3.6 to the application to notify of this effect.

When the startRTPService() method as defined in clause 6.5.3.7 is received with a parameter serviceID, the MBMS client runs the following steps:

· The MBMS client checks for errors and if necessary, the rtpServiceError() notification as defined in clause 6.5.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code RTP_INVALID_SERVICE. Otherwise it may use the error code RTP_UNKNOWN_ERROR. An errorMsg may be provided in the errorMsg string.

· If the service with the serviceId parameter can be started:
-
The MBMS client uses the SDP in the _SDP parameter and the remaining associated metadata to offer a valid media presentation to the RTP client by providing an RTP server in the MBMS client. For different options to provide such a service, refer to clause 7.
-
The URL to the SDP that is exposed to the MBMS aware application for RTP consumption is stored in the internal variable _sdpURI. The SDP stored at this URI may be continuously updated, based on dynamic information received in the service announcement updates.
-
The MBMS client sends a serviceStarted() notification as defined in clause 6.5.3.7 with the serviceId being passed along with the notification.
-
The MBMS client moves to ACTIVE state as defined in clause 6.5.2.5.
Whenever there has been a change to the parameters reported to the application in response to a getRTPServices() API, i.e. in the internal service class list _serviceClass[] to add a new service record to the list or a change in one of the following internal parameters in the service record in the _serviceLanguage, _serviceName[]_serviceBroadcastAvailability, or updates to the _sdpURI the MBMS client notifies application with rtpServiceListUpdate() as defined in clause 6.5.3.6.

When the deregisterRTPApp() is received, all internal parameters for the app are cleared and the client moves to IDLE state.

6.5.2.5

MBMS Client Operation in ACTIVE state

The MBMS client carries out all actions as in the REGISTERED state.

The MBMS client continuously downloads the RTP data and makes them available as announced in the SDP. For different options to provide such a service, refer to clause 7. The URL to the SDP that is exposed to the MBMS aware application for RTP consumption is stored in the internal variable _sdpURI. The SDP stored at this URI may be continuously updated, based on dynamic information received in the service announcement updates.
When the MBMS client receives a stopRTPService() request as defined in clause 6.5.3.9 that matches an active service.

· The MBMS client checks for errors and if necessary, the rtpServiceError() notification as defined in clause 6.5.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code RTP_INVALID_SERVICE. Otherwise it may use the error code RTP_UNKNOWN_ERROR. An errorMsg may be provided in the errorMsg string.
· the MBMS client stops providing the RTP data at its RTP server, i.e. at the location announced in the SDP referenced by the _sdpURI.

· The MBMS client moves to REGISTERED state as defined in clause 6.5.2.4.

When the MBMS client receives a stopRTPService() request as defined in clause 6.5.3.12 that matches an active service, the MBMS client terminates the reception of the data of this RTP delivery session and no longer makes it available at the indicated resources in the SDP. The MBMS client transitions to REGISTERED state
When the MBMS the internal parameter _serviceBroadcastAvailability transitions to BROADCAST_UNAVAILABLE, and no alternative delivery method is defined, or if the service is no longer available for other reasons (e.g. frequency conflict), then the service is stalled. In this case the MBMS client:

· No longer makes available the resources in the announced locations by the _sdpURI and the references therein,

· Sends a serviceStalled() notification as defined in clause6.5.3.11, along with one of the following reasons:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startRTPService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

· Transitions to the STALLED state as defined in clause 6.5.3.11.

6.5.2.6

MBMS Client Operation in STALLED state

The MBMS client carries out all actions as in the REGISTERED state.

In this state the MBMS client continuously monitors if the service can be made available again.

Once the service gets available again, the MBMS client

· The MBMS client receives the RTP data and makes them available as announced in the SDP. For different options to provide such a service, refer to clause 7. The URL to the SDP that is exposed to the MBMS aware application for RTP consumption is stored in the internal variable _sdpURI. The SDP stored at this URI may be continuously updated, based on dynamic information received in the service announcement updates
· The MBMS client sends a serviceStarted() notification as defined in clause 6.5.3.7 with the serviceId being passed along with the notification.
· The MBMS client moves to ACTIVE state as defined in clause 6.5.2.5.
6.5.3
Methods

6.5.3.1
Overview

Table 6.5-2 provides an overview over the methods defined for the MBMS RTP streaming delivery Service API. Different types are differentiated, namely state changes triggered by the app, status query of the app to the client, parameter updates as well as notifications from the client. The direction of the main communication flow is provided.

Table 6.5-2: Methods defined for MBMS RTP streaming delivery Service API

	Method
	Type
	Direction
	Brief Description
	Section

	registerRTPApp
	State change
	A -> C
	Application registers a callback listener with the MBMS client
	6.5.3.2

	deregisterRTPApp
	State change
	A -> C
	Application deregisters with the MBMS client
	6.5.3.10

	startRTPService
	State change
	A -> C
	Starts RTP service
	6.5.3.8

	stopRTPService
	State change
	A -> C
	Stop RTP service
	6.5.3.9

	getRTPServices
	Status query
	C <-> A
	Get list of currently active services
	6.5.3.4

	getVersion
	Status query
	C <-> A
	Get the API version
	6.5.3.13

	setRTPServiceClassFilter
	Update to parameter list
	A -> C
	Application sets a filter on MBMS RTP streaming delivery services in which it is interested
	6.5.3.5

	registerRTPResponse
	Update to parameter list
	C -> A
	The response to the application RTP service register API
	6.5.3.3

	serviceStarted
	Notification
	C -> A
	Notification to application when the MBMS RTP streaming delivery service started
	6.5.3.7

	rtpServiceListUpdate
	Notification
	C -> A
	Notification to application on an update of the available for MBMS RTP streaming delivery services
	6.5.3.6

	rtpServiceError
	Notification
	C -> A
	Notification to application when there is an error with the reception download of service
	6.5.3.12

	serviceStalled
	Notification
	C -> A
	Notification to application that MBMS RTP streaming delivery service failed
	6.5.3.11

6.5.3.2

Registration

6.5.3.2.1
Overview

This clause defines registerRTPApp() interface.

An MBMS Aware Application calls the registerRTPApp() interface to register with the MBMS Client to consume MBMS RTP streaming delivery services. The registerRTPApp() interface has two purposes:

· It signals to the MBMS Client that an application is interested to consume MBMS RTP streaming delivery Services.

· It allows the application to identify its callback listeners defined in the MBMS RTP streaming delivery service API for the MBMS Client to provide asynchronous notifications to the application on relevant events associated with RTP-over-MBMS.

Note: Since some application development frameworks do not support callback functions, an MBMS Aware Application for these frameworks will not provide callback listeners in the registerRTPApp() interface. Instead, the application will implement the necessary approach available on these frameworks to receive event notifications from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.

Figure 6.5-2 shows the registration process.
[image: image2.png]MBMS Aware
Application

MBMS Client

Figure 6.5-2 Application Registration sequence diagram

6.5.3.2.2
Parameters

The parameters for the registerRTPApp() API are:

· string appId – provides a unique ID for the application registering with the MBMS client, which uses this identity to maintain state information for a particular MBMS Aware Application. The uniqueness of the ID is in the context of any application that may possibly register with MBMS client. Uniqueness is typically provided on platform level.
· any platformSpecificAppContext – a platform-specific context for the registering application that enables the MBMS client to get extra information about the application that may be need to enable the application to have access to MBMS services, e.g., to enable application authentication or to enable the application to communicate with the MBMS client via platform (e.g., HLOS) services.
· sequence<string> serviceClassList – provides a comma-separated list of service classes which the application is interested to register. Each service class string can be any string or it may be empty.
· ILTERTPServiceCallback callBack – provides the MBMS client with the call back functions associated with MBMS RTP streaming delivery Service APIs for the registering MBMS Aware Application.

Note:
The callback element in the IDL description is optional and only included when the application development framework supports programmatic callback interfaces. If callbacks are not supported on a given application development framework, the same information content as defined on the callback structures is to be provided to the application via the notification method available with that development framework when the respective condition is met.

6.5.3.2.3
Pre-Conditions

The application has assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.

The application is pre-configured with the set of service classes that allows it to consume the MBMS RTP streaming delivery Services associated with these service classes.

The application has access to a RTP client.

The application may use this method at launch or after a deregisterRTPApp() has been called.

The MBMS client is in IDLE state.

6.5.3.2.4
Usage of Method for Application

The application uses the method registerRTPApp() to register with the MBMS Client to consume MBMS RTP streaming delivery Services.

The application provides its appId and, if applicable, some platform specific application context, platformSpecificAppContext.

The application provides the set of service classes which the application is interested to register.

6.5.3.2.5
Expected MBMS Client Actions

When this method is invoked, the MBMS registers the app, if possible. For more details refer to clause 6.5.2.3.
6.5.3.2.6
Post-Conditions

The application expects the registerRTPResponse() as defined in 6.5.3.3.

6.5.3.3

MBMS RTP streaming delivery Service Registration Response

6.5.3.3.1
Overview

This clause defines registerRTPResponse() call.

As illustrated in Figure 6.5-2, the MBMS client responds to an Application call to the registerRTPApp() API with a registerRTPResponse() call back providing the result of the registration request.
6.5.3.3.2
Parameters

The parameters for the registerRTPResponse() API are:

· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

-
REGISTER_SUCCESS – indicates that the registration has been processed successfully and the application can proceed with other API interactions with the MBMS client for MBMS RTP streaming delivery Services.

-
FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the registration has failed since the MBMS RTP streaming delivery Service API did not find an MBMS client available on the UE on which the application is running and no MBMS service will be available to the application.

-
MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.

· string message – provides an associated text description of the error message. The message may be empty.

6.5.3.3.3
Pre-Conditions

The MBMS client has received a call via the registerRTPApp() API as defined in clause 6.5.3.2.

6.5.3.3.4
Expected MBMS Client Actions

The MBMS client responds accordingly and depending on the response moves to one of the states: IDLE, NOT_AVAILABLE, or REGISTERED. For more details refer to clause 6.5.2.4.
6.5.3.3.5
Usage of Method for Application

Once the application receives a the registerRTPResponse() with the RegResponseCode set to REGISTER_SUCCESS, the application can proceed with other API interactions with the MBMS client.

If the MBMS client is temporarily in NOT_AVAILABLE, if the registerRTPResponse() signaled a failure with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, the application may periodically recheck if the state of the MBMS client changes by retrying the registerRTPApp() API.

If the MBMS client is responding with MISSING_PARAMETERS, the application should fix the parameters and retry the registerRTPApp() API.

6.5.3.3.6
Post-Conditions

If the MBMS client functions cannot be activated and once the response is sent, then MBMS client is at least temporarily in NOT_AVAILABLE state.
If the MBMS client functions can be activated and respective response is sent, then MBMS client is in REGISTERED state with the REGISTERED parameters as set above.
6.5.3.4
Getting information on available MBMS RTP streaming delivery Services

6.5.3.4.1
Overview

This clause defines getRTPServices() API call.

The registerRTPApp() interface returns the complete list of available MBMS RTP streaming delivery Services information. As illustrated in Figure 6.5-2, after a successful registration with the MBMS client, the MBMS Aware Application can use the getRTPServices() API to discover the available MBMS RTP streaming delivery Services associated with the service classes registered via the registerRTPApp().
6.5.3.4.2
Parameters

The getRTPServices() API returns a list describing the available MBMS RTP streaming delivery Services, where each service is described by the following output only parameters:

· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.
-
string name – offers a title for the user service on the language identified in the lang parameter.

-
string lang – identifies a natural language identifier per RFC 3066 [10].

· string serviceClass – identifies the service class which is associated with the service.
· string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.
· string serviceLanguage – indicates the available language for the service and represented as an identifier per RFC3066 [10].
· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.
-
The possible values are:

-
BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.

-
BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.

· string sdpUri – provides an HTTP URL where the SDP for the MBMS RTP streaming delivery Service is hosted and available for RTP clients access.

· string interfaceName – provides the network interface name from which the started MBMS RTP streaming delivery Service can be received by the RTP clients.

· EmbmsCommonTypes::Date activeServicePeriodStartTime – signals the current/next active MBMS RTP streaming delivery Service start time, when RTP data starts being broadcasted over the air.

· EmbmsCommonTypes::Date activeServicePeriodEndTime – signals the current/next active MBMS RTP streaming delivery Service stop time, when RTP data stops being broadcasted over the air.
6.5.3.4.3
Pre-Conditions

The MBMS client is in REGISTERED.

6.5.3.4.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client returns the RTP service parameters. For more details refer to clause 6.5.2.4.

6.5.3.4.5
Usage of Method for Application

The application should use this call right after the registerRTPResponse() notification as defined in clause 6.5.3.3 is received or after the rtpServiceListUpdate() notification as defined in clause 6.5.3.6 is received.

The application should use the serviceId to identify the service in subsequent communication with the MBMS client to manage the MBMS RTP streaming delivery service.

The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the application.

The sdpURI should be used by the application to initiate playback by initiating a RTP client. The application should assume that the Media Presentation can be consumed by the RTP client without any further interaction with the MBMS-aware application. The interfaceName should be used by the RTP client to filter the data stream reception from a specific network interface.

 The parameters activeServicePeriodStartTime and activeServicePeriodEndTime provides the application the ability to determine the current broadcast state for the service as follows:

· If the current time is such that activeServicePeriodStartTime ≤ current time ≤ activeServicePeriodEndTime, RTP content is being broadcast for the service at the current time.

· If the activeServicePeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

· If the activeServicePeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.

6.5.3.4.6
Post-Conditions

This call does not change the MBMS client state.

The application uses the serviceId to identify the service in subsequent communication with the MBMS client.
6.5.3.5
Updating the registered service classes

6.5.3.5.1
Overview

This clause defines setRTPServiceClassFilter() call.

While an application is actively registered with the MBMS client to consume MBMS RTP streaming delivery Services, the MBMS Aware Application can call the setRTPServiceClassFilter() API to update the list of service classes the application wants to be registered with, see figure 6.5.3.5.1-1.

[image: image3.png]/

MBMS Aware

MBMS Client
Application

= > -
£ \
/ |
[registerRTPApp()
| 7 » }
| |
‘ registerRTPResponse()
. |- }
| |
| |
| |
\
| l
} setRTPServiceClassFilter() > }
| |
‘ rtpServiceListUpdate() ‘
| |
‘ getRTPServices() !
} <« >
| l
| |
} deregisterRTPApp() o
\ /\
\\ 7777777 P

Figure 6.5.3.5.1-1: Sequence diagram for updating the registered service classes for an application

6.5.3.5.2
Parameters

The parameters for the setRTPServiceClassFilter() method are:

· sequence<string> serviceClassList – see clause 6.5.3.2.2.

6.5.3.5.3
Pre-Conditions

The application is actively registered with the MBMS client to consume MBMS RTP streaming delivery Services, and MBMS client is in REGISTERED state for the application.

6.5.3.5.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client shall updates the internal parameters and is expected to provide a rtpServiceListUpdate() notification as defined in clause 6.5.3.6. For more details refer to clause 6.5.2.4.

6.5.3.5.5
Usage of Method for Application

The MBMS Aware Application may invoke the setRTPServiceClassFilter() API to update the previously defined new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes.

The application should be aware that the updates are only active once an rtpServiceListUpdate() notification is received that confirms the new service class filters.

6.5.3.5.6
Post-Conditions

The MBMS client issues an rtpServiceListUpdate() notification as defined in clause 6.5.3.6.

6.5.3.6
Updating the RTP Service List

6.3.3.6.1
Overview

This clause defines rtpServiceListUpdate() notification.

This notification is used by the MBMS client to inform the application about a successful API call setRTPServiceClassFilter() as shown in Figure 6.5-3 or other updates in RTP service list.

6.3.3.6.2
Parameters

None.

6.3.3.6.3
Pre-Conditions

The MBMS client is in REGISTERED state for the application. The MBMS-aware application has issued a setRTPServiceClassFilter()API call.

6.3.3.6.5
Expected MBMS Client Actions

The MBMS client issues this notification as a response to a successful setRTPServiceClassFilter()API call or to the response to updates of the service list provided in the SDP. For more details see clause 6.5.2.4.

6.5.3.6.5
Usage of Method for Application

The application is informed about the updates of the service class list and may issues a getRTPServices() API call as defined in clause 6.5.3.4 to obtain the updated service list.

6.5.3.6.6
Post-Conditions

The MBMS-aware application has the latest service list. No state change is involved.

6.5.3.7
Start MBMS RTP streaming delivery Service

6.5.3.7.1
Overview

This clause defines startRTPService() API.

After the MBMS RTP streaming delivery Service registration, the MBMS Aware Application can make calls on the startRTPService() API for the MBMS client to start reception of RTP content received over broadcast, as shown in Figure 6.5.3.7.1-1.

[image: image4.png]MBMS Aware
Application

MBMS Client

receive RTP data
and perform FEC decode

Stop RTP data reception

Figure 6.5.3.7.1-1: Application starts MBMS RTP streaming delivery services
6.5.3.7.2
Parameters

The parameters for the startRTPService() API are:

· string serviceId – see clause 6.5.3.4.2.

6.5.3.7.3
Pre-Conditions

The MBMS client is in REGISTERED state.

The application has the latest service list, for example through the getRTPServices() API call as defined in clause 6.5.3.4.

6.5.3.7.4
Usage of Method for Application

The MBMS Aware Application can make calls on the startRTPService() API for the MBMS client to start reception of RTP data over broadcast.
When application is no longer interested in consuming the RTP Service, it should call the stopRTPService() API call as defined in clause 6.5.3.9.

6.3.3.7.5
MBMS Client Actions

When this method is invoked, the MBMS client starts the RTP service, if possible. For more details see clause 6.5.2.4.

6.5.3.7.6
Post-Conditions

The MBMS-aware application expects a serviceStarted() notification as defined in clause 6.5.3.7 or an appropriate error message.

6.5.3.8
Notification that MBMS RTP streaming delivery Service has started

6.5.3.8.1
Overview

Once the MBMS client has successfully collected all necessary information to start the service the MBMS client invokes the serviceStarted() callback function.
6.5.3.8.2
Parameters

The parameters for the serviceStarted() API are:

· string serviceId – see definition in clause 6.5.3.2.2.

6.5.3.8.3
Pre-Conditions

The MBMS application issued a startRTPService() API call.

The MBMS client is in REGISTERED state for the serviceId.

6.5.3.8.4
Expected MBMS Client Actions

The MBMS client issues this notification if the service is started successful. For details see clause 6.5.2.4.

6.5.3.8.5
Usage of Method for Application

Once the application receives the callback on the successful start of the service with the serviceId, the application may start the MBMS RTP streaming delivery service initiating a RTP Media Presentation at a RTP client by handing over the sdpURI received during the registration process for this service.

6.5.3.8.6
Post-Conditions

The RTP client can communicate with the MBMS client. The MBMS client makes available the MBMS RTP streaming delivery service based on the SDP referenced in by the sdpURI of the service.

6.5.3.9
Stop MBMS RTP streaming delivery Service

6.5.3.9.1
Overview

This clause defines stopRTPService() API.

As figure 6.5-4 illustrates, when an MBMS Aware Application that issued a startRTPService() for a service is no longer interested in consuming the RTP content for that service, it will call the stopRTPService() API call.
6.5.3.9.2
Parameters

The parameter for the stopRTPService() API is:

· string serviceId – see definition in clause 6.5.3.2.2.

6.5.3.9.3
Pre-Conditions

The MBMS client is in ACTIVE state for this application.

6.5.3.9.4
Usage of Method for Application

If an MBMS Aware Application is no longer interested in consuming the RTP service, it should call the stopRTPService() API call. Latest at the same time, the Application should inform the RTP client about the termination of the service and the RTP client should no longer receive data that are referenced by the sdpURI.

6.5.3.9.5
MBMS Client Actions

The MBMS terminates the reception. For more details see clause 6.5.2.5.

6.5.3.9.6
Post-Conditions

The MBMS client is in REGISTERED state. The Media Presentation referenced by the sdpURI can no longer be accessed as the referenced data will no longer be provided at the announced location in the SDP.

6.5.3.10
MBMS RTP streaming delivery Service De-registration

6.5.3.10.1
Overview

This clause defines deregisterRTPApp() API.

An MBMS Aware Application registers services classes with the MBMS client to request the start of streaming for MBMS RTP streaming delivery Services. The MBMS Aware Application that registered with the MBMS client via the registerRTPApp() API should invoke the deregisterRTPApp() before exiting. An implicit stopRTPService() call is performed for all MBMS RTP streaming delivery Services that have been started since the last registerRTPApp() call. If there are no application interested in an MBMS RTP streaming delivery Service, the MBMS client stops capturing data for this Service.

The MBMS client stops monitoring for Service Announcement updates when there are no applications registered. There are no parameters for the registerRTPApp() API.

6.5.3.10.2
Parameters

None.

6.5.3.10.3
Pre-Conditions

The MBMS client is in REGISTERED state for this application.

6.5.3.10.4
Usage of Method for Application

MBMS Aware Application registered with the MBMS client via the registerRTPApp() API should invoke the deregisterRTPApp() before exiting.

6.5.3.10.5
MBMS Client Actions

The MBMS client no longer sends notifications and clears all context for the Application.

6.5.3.10.6
Post-Conditions

The app is no longer registered with the MBMS client.

The MBMS client is in IDLE mode.

6.5.3.11
Notification that MBMS RTP streaming delivery Service has stalled

6.5.3.11.1
Overview

This clause the serviceStalled() notification.

The MBMS client enables consumption of a MBMS RTP streaming delivery Service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE or BROADCAST_UNAVAILABLE. Other circumstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client will signal the application that the service is temporarily not available for playback by invoking the serviceStalled() API.

When broadcast reception of the service is re-established, the MBMS client will signal the application that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in Figure 6.5-5.

[image: image5.png]MBMS Aware
Application

MBMS Client

Mobility out of broadcast
coverage

Mobility into broadcast
coverage

Figure 6.5-5: Signaling that a MBMS RTP streaming delivery service stalled

6.5.3.11.2
Parameters

The parameter for the serviceStalled() API are:

-
string serviceId – identifies the MBMS RTP streaming delivery Service for which broadcast receptions have temporarily stalled.

-
StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startRTPService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

6.5.3.11.3
Pre-Conditions

The MBMS client is in ACTIVE mode.

6.5.3.11.4
Expected MBMS Client Actions

The MBMS client provides a serviceStalled() notification in case it can no longer provide the referenced resources in the Media Presentation provided with sdpURI. For more details refer to clause 6.5.2.5.

6.5.3.11.5
Usage of Method for Application

The MBMS Aware Application should stop the RTP client playback on reception of the serviceStalled() notification. However, unless the application is no longer interested in the content, it should not issue a stopRTPService() call in order to allow the MBMS client from trying to collect RTP content once the download problem is resolved. The application should inform the user of the temporary service interruption.

If the RTP client maintains in STALLED state for too long, the application should stop the service by issuing a stopRTPService().

6.5.3.11.6
Post-Conditions

The MBMS client is in STALLED mode.

6.5.3.12
Notification of MBMS RTP streaming delivery Service errors

6.5.3.12.1
Overview

This clause defines the rtpServiceError() notification.

As illustrated in Figure 6.5-5, the startRTPService() request from an MBMS Aware Application may not be served, so the MBMS client will send a failure indication via the rtpServiceError() to signal the error code for the result of processing the application's startRTPService().
[image: image6.png]MBMS Aware
Application

MBMS Client

startRTPService() validation
errors detected

Figure 6.5-5: Signaling errors with the startRTPService() request from the RTP-over-MBMS

Figure 6.5-6 also illustrates that the rtpServiceError() is used to signal the error code for the result of processing the application's a stopRTPService() request.

[image: image7.png]MBMS Aware
Application

MBMS Client

stopRTPCapture() validation
errors detected

Figure 6.5-6: Signaling errors with the stopRTPService() request from the RTP-over-MBMS

6.5.3.12.2
Parameters

The parameters for the rtpServiceError() API are:

-
string serviceId – identifies the MBMS RTP streaming delivery Service on which the MBMS client failed.

-
RTPErrorCode errorCode – identifies the error code for the reason causing the startRTPService() or the stopRTPService() request for the serviceId to fail. The available error codes are:

-
RTP_INVALID_SERVICE – signals that serviceID defined on the startRTPService() or the stopRTPService() request is not currently defined or it is not associated with the service classes with the MBMS Aware Application is registered.

-
RTP_UNKNOWN_ERROR – signals an error condition not explicitly identified.

-
string errorMsg – may provide additional textual description of the error condition.

6.5.3.12.3
Pre-Conditions

The MBMS client has received a the startRTPService() or a stopRTPService() request.

6.5.3.12.4
Expected MBMS Client Actions

The MBMS client will send a failure indication via the rtpServiceError() to signal the error code for the result of processing the application. For more details refer to clauses 6.5.2.4 and 6.5.2.5.
6.5.3.12.5
Usage of Method for Application

If the MBMS Aware application receives this notification, it should revalidate the capture call. The application should also update the service list by issuing a getRTPServices() as defined in clause 6.5.3.4.

6.5.3.12.6
Post-Conditions

No state change is applied.

6.5.3.13
Checking the version for MBMS RTP streaming delivery Service interface

6.5.3.13.1
Overview

This clause defines the getVersion() request function.

6.5.3.13.2
Parameters

The parameters for the getVersion()API call are:

· string version – identifies the version of the MBMS clients API implementation.

6.5.3.13.3
Pre-Conditions

The MBMS client may be in any state.

6.5.3.13.4
Usage of Method for Application

In order for the MBMS Aware Application to know the version of the MBMS RTP streaming delivery Service interface, the getVersion() API may be used. If the version number is not supported by the application, it should deregister and not use the API.

6.5.3.13.5
MBMS Client Actions

The getVersion() API returns the version of the implemented APIs of the MBMS client.

6.5.3.13.6
Post-Conditions

No state changes apply.
=== CHANGE 4 ===
7.6
Transport-only Interface

The MBMS Client should provide an interface such that the data delivered using the MBMS Transport-only delivery method can provide a packet stream that complies with a media format that can be decoded by the media receiver part of the MBMS client. As an example:

-
The MBMS Client may implement the functions of the "Hypothetical Receiver" as defined in clause 8B.2.2 of TS 26.346 [5],

-
The MBMS Client may provide the application with:

-
A SDP that describes the data stream.
-
The network interface from which the data stream can be received. For that purpose, the MBMS Client may forward the packets locally, e.g. through a virtual network interface, or through the network to the client. In such example, The MBMS client shall modify the SDP accordingly.
=== CHANGE 5 ===
B.5
IDL for MBMS Transport-only Service API

#include "EmbmsCommonTypes.idl"
module RTPService

{

 //Forward Declaration
 interface ILTERTPServiceCallback;

 /**
 * @name RTPErrorCode
 * @brief List of the errors for RTP service
 */
 enum RTPErrorCode

 {

 RTP_INVALID_SERVICE, /**< Invalid service ID */
 RTP_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for RTP service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };

 /**
 * @name RegisterRTPAppData
 * @brief RTP app registration information
 */
 struct RegisterRTPAppData

 {

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides
 a platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name RTPServiceClassList
 * @brief ServiceClass information which the app is interested in. It is for setRTPServiceClassFilter API.
 */
 typedef sequence<string> RTPServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name RTPServiceInfo
 * @brief RTP service information
 */
 struct RTPServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service availability */
 string sdpUri; /**< SDP URI used by RTP player */

 string interfaceName; /**< The network interface name used by the RTP player to receive the data described in the SDP. */
 EmbmsCommonTypes::Date activeServicePeriodStartTime; /**< The current/next active RTP service start time, when RTP data
 starts being broadcast over the air */
 EmbmsCommonTypes::Date activeServicePeriodEndTime; /**< The current/next active RTP service end time, when RTP data
 stops being broadcast over the air */
 sequence<long> SAIList; /**< Service Area IDs based on current location of the device*/
 };

 /**
 * @name RTPServices
 * @brief List of RTP service info objects
 */
 typedef sequence<RTPServiceInfo> RTPServices;

 /**
 * @name StartRTPServiceData
 * @brief Start RTP service information. It is used by StartRTPService API.
 */
 struct StartRTPServiceData

 {

 string serviceId; /**< Streaming service Id from RTPServiceInfo */
 };

 /**
 * @name StopRTPServiceData
 * @brief Stop RTP service information.
 * It is used by the StopRTPService API.
 */
 struct StopRTPServiceData

 {

 string serviceId; /**< Streaming service ID from RTPServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief RTP service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from RTPServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief RTP service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from RTPServiceInfo */
 };

 /**
 * @name RTPServiceErrorNotification
 * @brief RTP service error information. It is used by the RTPServiceErrorNotification API.
 */
 struct RTPServiceErrorNotification

 {

 string serviceId; /**< RTP service Id from RTPServiceInfo */
 RTPErrorCode errorCode; /**< RTP service error Id */
 string errorMsg; /**< error message */
 };

 /**
 * @name ServiceStalledNotification
 * @brief RTP service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< RTP service ID from RTPServiceInfo */
 StalledReasonCode reason; /**< RTP service stalled reason ID */
 };

 /**
 * @name RegisterRTPResponseNotification
 * @brief RTP app registeration response information
 */
 struct RegisterRTPResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTERTPService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current RTP service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerRTPApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterRTPAppData
 @see registerRTPResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerRTPApp(in RegisterRTPAppData regInfo, in ILTERTPServiceCallback callBack);

 /**
 @name deregisterRTPApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterRTPApp();

 /**
 @name startRTPService
 @brief Start receiving RTP data over broadcast
 @param[in] StartRTPService Parameters for starting the RTP services API
 @pre Application is registered for RTP service
 @see StartRTPServiceData
 @see serviceStarted()
 @see rtpServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startRTPService(in StartRTPServiceData serviceInfo);

 /**
 @name stopRTPService
 @brief Stop receiving RTP data over broadcast
 @param[in] StopRTPService Parameters for stoping the RTP services API
 @pre Application is registered for RTP service
 @see serviceStopped()
 @see StopRTPServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopRTPService(in StopRTPServiceData serviceInfo);

 /**
 @name setRTPServiceClassFilter
 @brief Application sets a filter on RTP services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with RTP service
 @see serviceUpdate()
 @see getRTPServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setRTPServiceClassFilter(in RTPServiceClassList serviceClassList);

 /**
 @name getRTPServices
 @brief Retrieves the list of RTP services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] RTPServices List of filtered RTP services
 @pre Application is registered for RTP service and received rtpServiceListUpdate notification
 @see RTPServices
 @see rtpServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getRTPServices(out RTPServices services);

 };

 interface ILTERTPServiceCallback

 {

 /**
 @name registerRTPResponse
 @brief The response to the application RTP service register API.
 @param Notification Parameters for registering a RTP response
 @pre Application called registerRTPApp
 @see RegisterRTPResponseNotification
 @see registerRTPApp()
 **/
 void registerRTPResponse(in RegisterRTPResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that RTP service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for RTP service and called startRTPService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that RTP service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for RTP service and called stopRTPService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name rtpServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for RTP service and called startRTPService
 @see RTPServiceErrorNotification
 **/
 void rtpServiceError(in RTPServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for RTP service stalled notification
 @pre Application is registered for RTP service and called startRTPService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name rtpServiceListUpdate
 @brief Notification to application on an update that is available for RTP services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for RTP service.
 @post call getRTPServices()
 **/
 void rtpServiceListUpdate();

 };

};

