
3GPP TSG SA4#92 meeting
(S4-170141
23 - 27 January, 2017, Tallinn, Estonia

 rev S4-170136
	CR-Form-v9.9

	 PSEUDO CHANGE REQUEST

	

	(

	26.347
	CR
	
	(

rev
	-
	(

Current version:
	1.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	RTP API

	
	

	Source to WG:
(

	Expway

	Source to TSG:
(

	

	
	

	Work item code:
(

	TRAPI
	
	Date: (

	10/23/2016

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)

	
	

	Reason for change:
(

	Provides the API for RTP-over-MBMS services

	
	

	Summary of change:
(

	Detailed semantics
Note that the CR is not yet complete and requires further updates.

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	6.4 7

	
	

	
	Y
	N
	
	

	Other specs
(

	
	
	 Other core specifications
(

	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
(

	The document is not considered complete and many updates are necessary. A revised version will be provided.

6.4
RTP-over-MBMS Service API

6.4.1
Introduction
The RTP-over-MBMS Service API provides MBMS Aware Applications with interfaces to manage the reception of RTP services delivered over RTP-over-MBMS services that are built on the Download Delivery Method. This API is intended to support RTP streaming applications.
6.4.2
MBMS Client State Model for RTP-over-MBMS (Informative)
Figure 6.4-1 provides an informative client state model in order to appropriately describe the messages on the RTP-over-MBMS service API. Four different states are defined as listed in Table 6.4-1. State changes may happen based on

· Callback or action from App or the RTP client
· Timer expiration in the MBMS client
· Information provided by the MBMS User Service (USD, schedule, FDT, file complete)

[image: image1.png]
Figure 6.3-1: State Diagram
Table 6.4-1 defines a state model for the MBMS client along with the parameters in each state.
Table 6.4-1 States and Parameters of MBMS Client

	States and Parameters
	Definiton

	IDLE
	In this state the MBMS client does not have a registered application and it may not keep the servide definition up to date.

	NON_AVAILABLE
	In this state an application cannot register with the MBMS client.

	REGISTERED
	In this state the MBMS client has registered application(s), it may keep the servide definition up to date, and it may be providing RTP-over-MBMS services to the application(s).
For each registered application with appId, the MBMS client maintains the following internal parameters. In this state the MBMS client sends callback notifications to the application.

	
	string appId
	A unique ID provided by the application, see clause xx.

	
	sequence<string> serviceClassList
	A list of service classes identifying the services the application will have access to, see clause xx.

	ACTIVE
	In this state the MBMS client provides RTP-over-MBMS services to the application(s) with registration state.

For each service for each registered application, the MBMS client maintains the following internal parameters

	
	Service ID
	The service ID for a RTP-over-MBMS service, see clause xx.

	
	Service class
	The service class associated with the RTP-over-MBMS service assigned the Service ID, see clause xx.

	
	String sdpURI
	The SDP URI associated with the RTP-over-MBMS service

	
	String interfaceName
	The network interface name from which the RTP-over-MBMS service can be received.

	STALLED
	

6.4.2.2

MBMS Client Operation in IDLE state

6.4.2.3

MBMS Client Operation in REGISTERED state

6.4.2.4

MBMS Client Operation in ACTIVE state

6.4.2.5

MBMS Client Operation in STALLED state

6.4.3
Methods

6.4.3.1
Overview

Table 6.4-2 provides an overview over the methods defined for the RTP-over-MBMS Service API. Different types are differentiated, namely state changes triggered by the app, status query of the app to the client, parameter updates as well as notifications from the client. The direction of the main communication flow is provided.
Table 6.4-2 Methods defined for RTP-over-MBMS Service API

	Method
	Type
	Direction
	Brief Description
	Section

	registerRTPApp
	State change
	A -> C
	Application registers a callback listener with the MBMS client
	6.4.3.2

	deregisterRTPApp
	State change
	A -> C
	Application deregisters with the MBMS client
	6.4.3.9

	startRTPService
	State change
	A -> C
	Starts RTP service
	6.4.3.6

	stopRTPService
	State change
	A -> C
	Stop RTP service
	6.4.3.8

	getRTPServices
	Status query
	C <-> A
	Get list of currently active services
	6.4.3.4

	getVersion
	Status query
	C <-> A
	Get the API version
	6.4.3.12

	setRTPServiceClassFilter
	Update to parameter list
	A -> C
	Application sets a filter on RTP-over-MBMS services in which it is interested
	6.4.3.5

	registerRTPResponse
	Update to parameter list
	A -> C
	The response to the application RTP service register API
	6.4.3.3

	serviceStarted
	Notification
	C -> A
	Notification to application when a new RTP-over-MBMS per application capture request
	6.4.3.7

	rtpServiceListUpdate
	Notification
	C -> A
	Notification to application on an update of the available for RTP-over-MBMS services
	6.4.3.13

	rtpServiceError
	Notification
	C -> A
	Notification to application when there is an error with broadcast download of service
	6.4.3.11

	serviceStalled
	Notification
	C -> A
	Notification to application that RTP-over-MBMS failed
	6.4.3.10

6.4.3.2

Registration

6.4.3.2.1
Overview

This clause defines registerRTPApp() interface.

An MBMS Aware Application calls the registerRTPApp() interface to register with the MBMS Client to consume RTP-over-MBMS services. The registerRTPApp() interface has two purposes:
· It signals to the MBMS Client that an application is interested to consume RTP-over-MBMS Services.
· It allows the application to identify its callback listeners defined in the RTP-over-MBMS API for the MBMS Client to provide asynchronous notifications to the application on relevant events associated with RTP-over-MBMS.

Note: Since some application development frameworks do not support callback functions, an MBMS Aware Application for these frameworks will not provide callback listeners in the registerRTPApp() interface. Instead, the application will implement the necessary approach available on these frameworks to receive event notifcations from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.
Figure 6.4-2 shows the registration process.
[image: image2.png]

 Figure 6.4-2 Application Registration sequence diagram
6.4.3.2.2
Parameters
The parameters for the registerRTPApp() API are:

· string appId – provides a unique ID for the application registerting with the MBMS client, which uses this identity to maintain state information for a particular MBMS Aware Application. The uniqueness of the ID is in the context of any application that may possibly register with MBMS client. Uniqueness is typically provided on platform level.
· any platformSpecificAppContext – a platform-specific context for the registering application that enables the MBMS client to get extra information about the application that may be need to enable the application to have access to MBMS services, e.g., to enable application authentication or to enable the application to communicate with the MBMS client via platform (e.g., HLOS) services.
· sequence<string> serviceClassList – provides a comma-separated list of service classes which the application is interested to register. Each service class string can be any string or it may be empty.
· ILTERTPServiceCallback callBack – provides the MBMS client with the call back functions associated with RTP-over-MBMS Application Service APIs for the registering MBMS Aware Application.
Note: The callback element in the IDL description is optional and only included when the application development framework supports programmatic callback interfaces. If callbacks are not supported on a given application development framework, the same information content as defined on the callback structures is to be provided to the application via the notification method available with that development framework when the respective condition is met.

6.4.3.2.3
Pre-Conditions

The application has assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.

The application is pre-configured with the set of service classes that allows it to consume the RTP-over-MBMS Services associated with these service classes.
The application has access to a RTP client.

The application may use this method at launch or after a deregisterRTPApp() has been called.

The MBMS client is in IDLE state.
6.4.3.2.4
Usage of Method for Application
The application uses the method registerRTPApp() to register with the MBMS Client to consume RTP-over-MBMS Services.
The application provides its appId and, if applicable, some platform specific application context, platformSpecificAppContext.

The application provides the set of service classes which the application is interested to register.
6.4.3.2.5
MBMS Client Actions
When this method is invoked, the MBMS client shall run the following steps:

1. Check input parameters

a. If appId is an empty string then throw a MISSING_PARAMETER result code in the registerRTPResponse()and abort these steps.

b. If serviceClassList is an empty, the MBMS client will considered the application to be registered with a service class that is also empty and only allow the application to have access to RTP-over-MBMS Services that are not associated with a service class (i.e., the USD for these services do not have a serviceClass defined).
c. If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerRTPApp() interface to send notification of event occurences to the Application.
2. Generates a response registerRTPResponse() as defined in 6.4.3.3.
6.4.3.2.6
Post-Conditions

The MBMS client sends a registerRTPResponse() as defined in 6.4.3.3.
The MBMS client is in REGISTERED state.
6.4.3.3

RTP-over-MBMS Service Registration Response
6.4.3.3.1
Overview

This clause defines registerRTPResponse() call.

As illustrated in Figure 6.4-2, the MBMS client responds to an Application call to the registerRTPApp() API with a registerRTPResponse() call back providing the result of the registration request.
6.4.3.3.2
Parameters

The parameters for the registerRTPResponse() API are:
· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:
· REGISTER_SUCCESS – indicates that the registration has been processed successfully and the application can proceed with other API interactions with the MBMS client for RTP-over-MBMS Services.
· FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the registration has failed since the RTP-over-MBMS Service API did not find an MBMS client available on the UE on which the application is running and no MBMS service will be available to the application.
· MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.

· string message – provides an associated text description of the error message. The message may be empty.

· unsigned long acceptedFdRegistrationValidityDuration – when returning REGISTER_SUCCESS, this parameter indicates the registration validity duration the MBMS client will provide to the registering application.
6.4.3.3.3
Pre-Conditions

The MBMS client has received a call via the registerRTPApp() API with the parameters documented in 6.4.3.2.2.

6.4.3.3.4
MBMS Client Actions
Based on the parameters of the registerRTPApp(), the MBMS client shall provide a response registerRTPResponse() as follows:

1) If the MBMS client functions cannot be activated, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide a message.
2) If the MBMS client functions can be activated, then

a. the RegResponseCode is set to REGISTER_SUCCESS registration response code

b. a message may be generated

3) Sends the response with the above parameters
If the MBMS client functions can be activated and the response is sent, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching RTP-over-MBMS services using the information in the User Service Description (USD).
6.4.3.3.5
Usage of Method for Application

Once the application receives a the registerRTPResponse() with the RegResponseCode set to REGISTER_SUCCESS, the application can proceed with other API interactions with the MBMS client.
6.4.3.3.6
Post-Conditions

If the MBMS client functions cannot be activated and once the response is sent, then MBMS client is at least temporarily in NOT_AVAILABLE state.
If the MBMS client functions can be activated and respective response is sent, then MBMS client is in REGISTERED state with the REGISTERED parameters as set above.
6.4.3.3.7
Implementation and Usage Guidelines
If the MBMS client is temporarily in NOT_AVAILABLE , the application may periodically recheck if the state of the MBMS client changes by retrying the registerRTPRequest() API.

6.4.3.4
Getting information on available RTP-over-MBMS Services
6.4.3.4.1
Overview

This clause defines getRTPServices() API.

The registerRTPApp() interface returns the complete list of available RTP-over-MBMS Services information. As illustrated in Figure 3, after a successful registration with the MBMS client, the MBMS Aware Application can use the getRTPServices() API to discover the available RTP-over-MBMS Services associated with the service classes registered via the registerRTPApp().
6.4.3.4.2
Parameters
The getRTPServices() API returns a list describing the available RTP-over-MBMS Service, where each service is described by the following output only parameters:
· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.
· string name – offers a title for the user service on the language identified in the lang parameter.
· string lang – identifies a natural language identifier per RFC3066 [10].
· string serviceClass – identifies the service class which is associated with the service.
· string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.
· string serviceLanguage – indicates the available language for the service and represented as an identifier per RFC3066 [10].
· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.
· The possible values are:
· BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.
· BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.
· string sdpUri – provides an HTTP URL where the SDP for the RTP-over-MBMS Application Service is hosted and available for RTP clients access.

· string interfaceName – provides the network interface name from which the started RTP-over-MBMS Application Service can be received by the RTP clients.

· EmbmsCommonTypes::Date activeServicePeriodStartTime – signals the current/next active RTP-over-MBMS Application Service start time, when RTP data starts being broadcasted over the air.

· EmbmsCommonTypes::Date activeServicePeriodEndTime – signals the current/next active RTP-over-MBMS Application Service stop time, when RTP data stops being broadcasted over the air.
6.4.3.4.3
Pre-Conditions

The MBMS client is in REGISTERED state or in CAPTURE_NOTIFY state and may or may not have acquired any USD information for services that are included in the service class list.
6.4.3.4.5
Usage of Method for Application (Application Requirements)
The application should use this call right after the registerRTPResponse() notification as defined in XXX is received or after the rtpServiceListUpdate() notification as defined in xxx is received.

The application should use the serviceId to identify the service in subsequent communication with the MBMS client to manage the RTP-over-MBMS service.

The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the application.

The sdpURI should be used by the application to initiate playback by initiating a RTP client. The interfaceName should be used by the RTP client to filter the data stream reception from a specific network interface.
 The parameters activeBroadcastPeriodStartTime and activeBroadacstPeriodEndTime provides the application the ability to determine the current broadcast state for the service as follows:

· If the current time is such that activeServicePeriodStartTime ≤ current time ≤ activeServicePeriodEndTime, RTP content is being broadcast for the service at the current time.

· If the activeServicePeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

· If the activeServicePeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.
6.4.3.4.5
MBMS Client Actions
When this method is invoked, the MBMS client shall set the parameters as follows:

· If no MBMS user service is available in the MBMS client for the registered service class by the application, an empty list is returned
· For any MBMS user service for which the USD as defined in TS26.346 [XXX] is available in the MBMS client for the service classes registered by the application one entry in the list is generated as follows:

· For each userServiceDescription.name element, a (name, lang) pair is generated and added to the serviceNameList parameter with name set to the value of the USD element, and if present, the lang set to the value of the associated @lang attribute. If no @lang attribute is present, the lang parameter is set to an empty string.
· If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to serviceClass. If not present, the serviceClass is set to an empty string.
· The value of the attribute userServiceDescription@serviceId is assigned to serviceId.
· If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to serviceLanguage. If not present, the serviceLanguage is set to an empty string.

· If the UE is currently in the broadcast coverage area for the service, the serviceBroadcastAvailability is set to BROADCAST_AVAILABLE, if not, it is set to BROADCAST_UNAVAILABLE.
· ASSIGN SDP
· EmbmsCommonTypes::Date activeDownloadPeriodStartTime – signals the current/next active RTP-over-MBMS Service start time, when RTP-over-MBMS start being broadcast over the air.

· EmbmsCommonTypes::Date activeDownloadPeriodEndTime – signals the current/next active RTP-over-MBMS Service stop time, when RTP-over-MBMS stop being broadcast over the air.
· The interfaceName value is set according to the MBMS client internal configuration and the UE network environment. The configured interface may be a physical network interface of the device, as well as a virtual or local interface.

6.4.3.4.6
Post-Conditions

This call does not change the MBMS client state.

The application uses the serviceId to identify the service in subsequent communication with the MBMS client.
6.4.3.5
Updating the registered service classes

6.4.3.5.1
Overview

This clause defines setRTPServiceClassFilter() call.

While an application is actively registered with the MBMS client to consume RTP-over-MBMS Services, the MBMS Aware Application can call the setRTPServiceClassFilter() API to update the list of service classes the application wants to be registered with, see figure 6.4-3.
[image: image3.png]
Figure 6.4-3 Sequence diagram for updating the registered service classes for an application
6.4.3.5.2
Parameters
The parameters for the setRTPServiceClassFilter() method are:
· sequence<string> serviceClassList – see 6.4.3.2.2
6.4.3.5.3
Pre-Conditions

The application is actively registered with the MBMS client to consume RTP-over-MBMS Services, and MBMS client is in REGISTERED state for the application.
6.4.3.5.4
Usage of Method for Application

The MBMS Aware Application may invoke the setRTPServiceClassFilter() API to update the previously defined new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes.

The application should be aware that the updates are only active once an an rtpServiceListUpdate() notification is received that confirms the new service class filters.
6.4.3.5.5
MBMS Client Actions
When this method is invoked, the MBMS client shall run the following steps:

· It updates the internal variable serviceClassList to the parameter value provided in the call.

· The MBMS client dis-associates the service classes previously associated with the MBMS Aware Application that are not included on this list.
· The MBMS client associates the service classes not previously associated with the MBMS Aware Application that are newly included on this list.

· The MBMS client issues a rtpServiceListUpdate() notification as defined in XXXX to the application to alert it of this effect.

6.4.3.5.6
Post-Conditions

The MBMS client issues an rtpServiceListUpdate() notification as defined in XXXX.
6.4.3.6
Start RTP-over-MBMS Service
6.4.3.6.1
Overview

This clause defines startRTPService() API.

After the RTP-over-MBMS Service registration, the MBMS Aware Application can make calls on the startRTPService() API for the MBMS client to start reception of RTP content received over broadcast, depending on the current serviceBroadcastAvailability for the service as shown in Figure 6.4-4.
[image: image4.png]
Figure 6.4-4 Application starts RTP-over-MBMS services
6.4.3.6.2
Parameters
The parameters for the startRTPService() API are:

· string serviceId – see 6.4.3.4.2. The service ID for the service for which the RTP data are captured.

6.4.3.6.3 Pre-Conditions

The application is registered with the MBMS client to consume RTP-over-MBMS Services.
6.4.3.6.4
Usage of Method for Application

The MBMS Aware Application can make calls on the startRTPService() API for the MBMS client to start reception of RTP content received over broadcast,
When application is no longer interested in consuming the RTP-over-MBMS Service, it should call the stopRTPService() interface as defined in XXX.

6.4.3.6.4 MBMS Client Actions
When this method is invoked, the MBMS client shall run the following steps:

-
write down details in MBMS Client
-
issue serviceStarted

6.4.3.6.6
Post-Conditions

The MBMS client is in ACTIVE state for the requested serviceID.

6.4.3.7
Notification that RTP-over-MBMS for a Service has started
6.4.3.7.1
Overview

As illustrated in Figure 6, once the MBMS client has successfully all necessary information to start the service the MBMS client invokes the serviceStarted() callback function.
6.4.3.7.2
Parameters
The parameters for the serviceStarted() API are:

· string serviceId – definition see above.
6.4.3.7.3
Pre-Conditions

The MBMS client is in ACTIVE state for the serviceId.

6.4.3.7.4
MBMS Client Actions
The MBMS client shall invoke the serviceStarted() with the following

· The serviceId is set to the service that this captured RTP data is associated to.

· <describe the API between RTP client and MBMS client (refer elsewhere>
6.4.3.7.5
Usage of Method for Application

Once the application receives the callback, the application may start the RTP-over-MBMS service by calling a RTP client.
6.4.3.7.6
Post-Conditions

The MBMS client is in ACTIVE state

The RTP client can communicate with the MBMS client.
6.4.3.8
Stop RTP-over-MBMS Service
6.4.3.8.1
Overview

This clause defines stopRTPService() API.

As figure 6.4-4 illustrates, when an MBMS Aware Application that issued a startRTPService() for a service is no longer interested in consuming the RTP content for that service, it will call the stopRTPService() API, which will stop capture of data for the service over broadcast. The application should also stop the RTP-over-MBMS playback by the RTP client.

6.4.3.8.2
Parameters
The parameter for the stopRTPService() API is:

· string serviceId – identifies the RTP-over-MBMS Service which the MBMS client is to stop reception of RTP content.
6.4.3.8.3
Pre-Conditions

The MBMS client is in REGISTERED state for this application.
6.4.3.8.4
Usage of Method for Application

6.4.3.8.5
MBMS Client Actions
The MBMS client stops sending any notifications to the client.
6.4.3.8.6
Post-Conditions

The app is no longer registered with the MBMS client.
6.4.3.9
RTP-over-MBMS Service De-registration
6.4.3.9.1
Overview

This clause defines deregisterRTPApp() API.

An MBMS Aware Application registers services classes with the MBMS client to request the start of streaming for RTP-over-MBMS Services. The MBMS Aware Application that registered with the MBMS client via the registerRTPApp() API should invoke the deregisterRTPApp() before exiting. . An implicit stopRTPService() call is perfomed for all RTP-over-MBMS Services that have been started since the last registerRTPApp() call. If there are no application interested in an RTP-over-MBMS Service, the MBMS client stops capturing data for this Service.
The MBMS client stops monitoring for Service Announcement updates when there are no applications registered. There are no parameters for the registerRTPApp() API.
6.4.3.9.2
Parameters
6.4.3.9.3
Pre-Conditions

The MBMS client is in REGISTERED state for this application.
6.4.3.9.4
Usage of Method for Application

6.4.3.9.5
MBMS Client Actions
6.4.3.9.6
Post-Conditions

6.4.3.10
Notification that RTP-over-MBMS for a Service has stalled

6.4.3.10.1
Overview

This clause the serviceStalled() notification.

The MBMS client will enable consumption of a RTP-over-MBMS Service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE or BROADCAST_UNAVAILABLE. Other circunstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client will signal the application that the service is temporarily not available for playback by invoking the serviceStalled() API. When broadcast reception of the service is re-established, the MBMS client will signal the application that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in Figure 6.4-5.
[image: image5.png]

Figure 6.4-5 Signaling that a RTP-over-MBMS service stalled
The MBMS Aware Application can stop the RTP client playback on reception of the serviceStalled() call, but it should not stop the MBMS client from trying to collect RTP content over broadcast for the requested service. This will enable the MBMS client to signal that content is available via broadcast again once the UE moves back into the broadcast coverage for the service, as described above. The application should also properly represent the service interruption to the user.

6.4.3.10.2
Parameters
The parameter for the serviceStalled() API are::

· string serviceId – identifies the RTP-over-MBMS Service for which broadcast receptions have temporarily stalled.
· StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:

· RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startRTPService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

· END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeBroadcastPeriodEndTime time has been reached.

· OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.

· STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

6.4.3.10.3
Pre-Conditions

6.4.3.10.4
Usage of Method for Application

6.4.3.10.5
MBMS Client Actions
6.4.3.10.6
Post-Conditions

6.4.3.11
Notification of RTP-over-MBMS Service errors

6.4.3.11.1
Overview

This clause the rtpServiceError() notification.

As illustrated in Figure 6.4-5, the startRTPService() request from an MBMS Aware Application may not be served, so the MBMS client will send a failure indication via the rtpServiceError() to signal the error code for the result of processing the application’s startRTPService().
[image: image6.png]
Figure 6.4-5 Signaling errors with the startRTPService() request from the RTP-over-MBMS
Figure 9 also illustrates that the rtpServiceError() is used to signal the error code for the result of processing the application’s a stopRTPService() request.
[image: image7.png]
Figure 6.4-6 Signaling errors with the stopRTPService() request from the RTP-over-MBMS
6.4.3.11.2
Parameters
The parameters for the rtpServiceError() API are:
· string serviceId – identifies the RTP-over-MBMS Service on which the MBMS client failed to process the startRTPService() or the stopRTPService() request.

· RTPErrorCode errorCode – identifies the error code for the reason causing the startRTPService() or the stopRTPService() request for the serviceId to fail. The available error codes are:

· RTP_INVALID_SERVICE – signals that serviceID defined on the startRTPService() or the stopRTPService() request is not currently defined or it is not associated with the service classes with the MBMS Aware Application is registered.

· RTP_UNKNOWN_ERROR – signals an error codition not explicitly identified.

string errorMsg – may provide additional textual description of the error condition.
6.4.3.11.3
Pre-Conditions
6.4.3.11.4
Usage of Method for Application

6.4.3.11.5
MBMS Client Actions
6.4.3.11.6
Post-Conditions

6.4.3.12
Checking the version for RTP-over-MBMS Service interface

6.4.3.12.1
Overview

This clause defines the getVersion() request function.

6.4.3.12.2
Parameters
The parameters for the getVersion()API call are:

· string version – identifies the version of the MBMS clients API implementation.
6.4.3.12.3
Pre-Conditions

The MBMS client may be in any state.

6.4.3.12.4
Usage of Method for Application

In order for the MBMS Aware Application to know the version of the RTP-over-MBMS Service interface, the getVersion() API may be used. If the version number is not supported by the application, it should deregister and not use the API.

6.4.3.12.5
MBMS Client Actions
The getVersion() API returns the version of the implemented APIs of the MBMS client.

6.4.3.12.6
Post-Conditions
No state changes apply.

6.4.4
IDL

#include "EmbmsCommonTypes.idl"
module RTPService

{

 //Forward Declaration
 interface ILTERTPServiceCallback;

 /**
 * @name RTPErrorCode
 * @brief List of the errors for RTP service
 */
 enum RTPErrorCode

 {

 RTP_INVALID_SERVICE, /**< Invalid service ID */
 RTP_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for RTP service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };

 /**
 * @name RegisterRTPAppData
 * @brief RTP app registration information
 */
 struct RegisterRTPAppData

 {

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides
 a platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name RTPServiceClassList
 * @brief ServiceClass information which the app is interested in. It is for setRTPServiceClassFilter API.
 */
 typedef sequence<string> RTPServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name RTPServiceInfo
 * @brief RTP service information
 */
 struct RTPServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service availability */
 string sdpUri; /**< SDP URI used by RTP player */

 string interfaceName; /**< The network interface name used by the RTP player to receive the data described in the SDP. */
 EmbmsCommonTypes::Date activeServicePeriodStartTime; /**< The current/next active RTP service start time, when RTP data
 starts being broadcast over the air */
 EmbmsCommonTypes::Date activeServicePeriodEndTime; /**< The current/next active RTP service end time, when RTP data
 stops being broadcast over the air */
 sequence<long> SAIList; /**< Service Area IDs based on current location of the device*/
 };

 /**
 * @name RTPServices
 * @brief List of RTP service info objects
 */
 typedef sequence<RTPServiceInfo> RTPServices;

 /**
 * @name StartRTPServiceData
 * @brief Start RTP service information. It is used by StartRTPService API.
 */
 struct StartRTPServiceData

 {

 string serviceId; /**< Streaming service Id from RTPServiceInfo */
 };

 /**
 * @name StopRTPServiceData
 * @brief Stop RTP service information.
 * It is used by the StopRTPService API.
 */
 struct StopRTPServiceData

 {

 string serviceId; /**< Streaming service ID from RTPServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief RTP service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from RTPServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief RTP service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from RTPServiceInfo */
 };

 /**
 * @name RTPServiceErrorNotification
 * @brief RTP service error information. It is used by the RTPServiceErrorNotification API.
 */
 struct RTPServiceErrorNotification

 {

 string serviceId; /**< RTP service Id from RTPServiceInfo */
 RTPErrorCode errorCode; /**< RTP service error Id */
 string errorMsg; /**< error message */
 };

 /**
 * @name ServiceStalledNotification
 * @brief RTP service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< RTP service ID from RTPServiceInfo */
 StalledReasonCode reason; /**< RTP service stalled reason ID */
 };

 /**
 * @name RegisterRTPResponseNotification
 * @brief RTP app registeration response information
 */
 struct RegisterRTPResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTERTPService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current RTP service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerRTPApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterRTPAppData
 @see registerRTPResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerRTPApp(in RegisterRTPAppData regInfo, in ILTERTPServiceCallback callBack);

 /**
 @name deregisterRTPApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterRTPApp();

 /**
 @name startRTPService
 @brief Start receiving RTP data over broadcast
 @param[in] StartRTPService Parameters for starting the RTP services API
 @pre Application is registered for RTP service
 @see StartRTPServiceData
 @see serviceStarted()
 @see rtpServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startRTPService(in StartRTPServiceData serviceInfo);

 /**
 @name stopRTPService
 @brief Stop receiving RTP data over broadcast
 @param[in] StopRTPService Parameters for stoping the RTP services API
 @pre Application is registered for RTP service
 @see serviceStopped()
 @see StopRTPServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopRTPService(in StopRTPServiceData serviceInfo);

 /**
 @name setRTPServiceClassFilter
 @brief Application sets a filter on RTP services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with RTP service
 @see serviceUpdate()
 @see getRTPServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setRTPServiceClassFilter(in RTPServiceClassList serviceClassList);

 /**
 @name getRTPServices
 @brief Retrieves the list of RTP services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] RTPServices List of filtered RTP services
 @pre Application is registered for RTP service and received rtpServiceListUpdate notification
 @see RTPServices
 @see rtpServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getRTPServices(out RTPServices services);

 };

 interface ILTERTPServiceCallback

 {

 /**
 @name registerRTPResponse
 @brief The response to the application RTP service register API.
 @param Notification Parameters for registering a RTP response
 @pre Application called registerRTPApp
 @see RegisterRTPResponseNotification
 @see registerRTPApp()
 **/
 void registerRTPResponse(in RegisterRTPResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that RTP service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for RTP service and called startRTPService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that RTP service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for RTP service and called stopRTPService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name rtpServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for RTP service and called startRTPService
 @see RTPServiceErrorNotification
 **/
 void rtpServiceError(in RTPServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for RTP service stalled notification
 @pre Application is registered for RTP service and called startRTPService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name rtpServiceListUpdate
 @brief Notification to application on an update that is available for RTP services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for RTP service.
 @post call getRTPServices()
 **/
 void rtpServiceListUpdate();

 };

};
	Second Change

7
Application Data Interface

7.1
Overview

7.3
Transport Data Interface
The MBMS Client shall implement a FEC Decoder as defined in 26.346, in order to provide the application with directly usable data stream.

The MBMS Client shall ensure that the application can receive the data stream. The MBMS Client shall provide the application with:
· A SDP that describes the data stream
· The network interface from which the data stream can be received
For that purpose, the MBMS Client may forward the packets locally, e.g. through a virtual network interface, or through the network to the client. In such example, The MBMS client shall changed the SDP accordingly
�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected and the CRs which are linked. This is particularly important where the affected specs belong to a different working group than that which will agree the present CR.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

