TSG SA4#92 meeting
Tdoc S4 (17)0137
Jan 2017, Tallinn, Estonia

Source:
David Singer, Apple
Title:
Synthesis of the MBMS URL Form
Document for:
Discussion
Agenda Item:

8.6 (MBS/TRAPI)
In 26.852 we have a number of variants of the URL form. I believe that we can now do a synthesis of the ideas, providing a solution which meets all the requirements. This contribution represents such a draft.

The text is drawn from 26.852 for the most part; changes are shown by tracking changes.

The most notable improvement is by using DNS URI records rather than RR records. This enables the DNS to supply any part of the URI that needs to be defaulted; in particular, it answers the question "what is the base URI when the presented URI lacks a &label suffix part?"

Example: the original URI is "mbms://soapopera.example.com/". DNS resolution on that for a URI record yields "mbms://soapopera.example.com/episodes.usd&label=http://soapopera.example.com/episode1.mpd". That is used to complete the presented URI, and the result is returned from the handler as a redirect and also used as a base URI for further URIs.

Now a relative URI of "segment1.mp4" or "episode2.mpd" would correctly be formed against the label part of this URI.

There is a concern with using non-A record entries in DNS: on the open internet, many small routers, caches, DHCP servers and so on do not handle anything other than A records. This would be an issue if we were considering this for general internet use. We are not; we can expect any deployment of this URI form to be in 3GPP environments where DNS handling is managed.

If acceptable, the following text should be added to section 8 of 26.247. Section 8 currently includes only subsection 8.1 which is included here, adjusted, for reference. The remaining sections are new.
8 MBMS URL handling
8.1 General
The MBMS URL form identifies resources that are made available over MBMS. It is therefore similar in meaning to other URL forms that deliver 'file' resources, such as "http:", "ftp:" and "file:".

[[The definition of other URL forms to identify other MBMS functionality, such as RTP streaming, is FFS]]
MBMS URLs are processed by a hypothetical MBMS URL Handler.
The position of the MBMS URL Handler, and its interfaces are illustrated by the logical model shown in Figure 25, In that figure URL usage is shown as an alternative to an application written to use MBMS services using the MBMS API (left side of the diagram, described elsewhere in the present document).

The MBMS URL handler is positioned within the logical model of a system that has library support for fetching resources (files) referred to by URLs. In the model an (unchanged) existing, or new, application supports URLs that address 'file' resources. That application uses a generic URL resolution library ('Generic URL Resolution' in the diagram) to return the identified resource when the application needs the resource identified by a URL.

The logical model is that the generic handler supports returning the resource given a URL of any type. That generic handler is supported by a set of protocol-specific handlers; by inspecting the scheme part of the URL (e.g. "http:") the generic handler in turn requests the resource of the appropriate protocol-specific handler. The request and response interfaces to the generic handler, and the protocol-specific modules are defined by the library (e.g. they may be object-oriented, function-based, or message-based). The present document defines the behaviour of the MBMS URL handler; however its request interface is defined by the library and environment which it fits into. The MBMS protocol-specific handler decomposes the URL form, and, using the MBMS APIs, initiates the acquisition of the MBMS service that permits access to the identified resource, and acquisition of the indicated resource from that session, and returns that resource. The behaviour of the MBMS protocol handler is specified in this section.

Note that this logical model may be optimized and collapsed as desired in real deployments (e.g. many web browsers do not use a general URL library but instead support key protocols with built-in code, and the MBMS function may also act as an MBMS URL handler).

The "file" resource may be an entry point to a service (e.g. an MPD for DASH, or the root HTML for a web service), and it may be the case that there is a default resource defined for a service (just as done today when an HTTP server will, for example, return "index.html" when no file name is specified in the URL).

[image: image1.emf]

FTP URL
handler

MBMS
Application (Existing) Application

(Existing) Generic URL
Resolution handler

MBMS URL
handler

HTTP URL
handler

MBMS function HTTP
function

MBMS API

Figure 25: MBMS URL Handler

8.2 URL structure, definition and behavior
8.2.1
The URL is composed of a prefix, mid-part, and suffix.
The prefix is a URL that is the serviceID of the service on which the resource is available. The suffix contains a URI that is the identifier of the desired resource. The mid-part currently has no defined content.
When a content provider wishes to use MBMS URL forms to identify resources made available by them over MBMS, they must use the prefix part of an MBMS URL as serviceID for the service. The creator of the serviceID URI must be or be authorized by the 'authority' (see below) identified in that serviceID.
[[Ed: a CR to 26.346 section 11.2.1.1 is needed, changing URN to URI in the following sentence, to permit URLs as serviceIDs:

Each userServiceDescription element shall have a unique identifier. The unique identifier shall be offered as serviceId attribute within the userServiceDescription element and shall be of URN URI format.
]]

The prefix starts with the scheme-name "mbms:" followed by a double-slash "//", followed by an authority and an optional path, as defined for "http:" by RFC7230, with the restriction that the prefix must not contain the character "&".

a)
b)
c)

Note:
the “//” means that the MBMS scheme is hierarchical and that relative URLs are permitted, and that they are effectively composed against the label part. Relative URL composition is not in the scope of this specification; a relative URL is, of course, composed against its base, and if the final result is an MBMS URL as defined here, then that URL is presented to the handler.
The mid-part consists of zero or more &name=value pairs. There are no currently defined mid-part pairs; they shall not be present in URLs and shall be ignored if present.
[[Ed: mid-part pairs future-proof us]]
The suffix is optional and consists of the string "&label=" followed by the URI which contains identifier of the desired resource (and optionally, as for all URIs, a query or fragment part). The suffix is terminated by the end of the URL.
(Note that the use of “&” used here is not part of a query or fragment, as there is no preceding “?” or “#”. “&” is in the main body of the URL where it is a legal character.)

The formal ABNF, following the syntax of RFC7230 (HTTP URLs) and RFC3986 (URLs):
mbms-URI = "mbms:" "//" authority path-abempty

*("&" mid-label "=" mid-value)

["&label=" resourceURI]

authority = <authority, see [RFC3986], Section 3.2>

path-abempty = <path-abempty, see [RFC3986], Section 3.3>

mid-label = ALPHA *(ALPHA / DIGIT)

mid-value = 1*uchar

uchar = unreserved / pct-encoded / ";" / "?" / ":" /

"@" / "=" / "+" / "$" / "," / "/"

unreserved = <unreserved, see [RFC3986], Section 2.3>

pct-encoded = <pct-encoded, see [RFC3986], Section 2.1>

resourceURI = <URI, see [RFC3986], Section 3>
The handler performs decomposition of the URI into the prefix, mid-part, and suffix.
If the URI passed to the handler lacks the suffix part, then the handler retrieves the DNS URI record, if any, from the hostname identified by the authority part of the prefix. The handler forms a new URI by adding to the passed URI all mid-part name=value pairs in the returned URI that have no matching name in the passed URI, and the suffix from the returned URI. If this operation succeeds in building a new URI that has a suffix, the handler returns a Redirect to this new URI; otherwise it returns an error.
[[Ed: this allows an operator to identify the default resource returned, and to publish just the prefix as an entry point; the Redirect causes the application to establish the new URI as as base for relative URI composition.]]
Otherwise, the serviceID is set to the prefix (the substring of the URI before the first "&") and the resourceLabel is set to portion of the resourceURI preceding the fragment part, if any. The MBMS API is called to return the resource identified by resourceLabel from the service identified by serviceID.

[[The resolution of the authority part of the prefix into the TMGI of the channel on which the USD with the given serviceID is made available is FFS]]
The MBMS API is responsible for:
1. finding the USD with the given serviceID;

2. checking the availability time interval of the resource;

3. finding and returning the resource on the given service;

4. keeping the service open for some "keep-alive" time in the expectation of further calls for resources from the same service;

5. caching resources received on the service;

6. sharing that cache with other protocol handlers.

Example:

mbms://www.example.com/sample.usd&label=http://v.example.com/sample.html#p6
· the serviceID is mbms://www.example.com/sample.usd
· the label of the desired resource is http://v.example.com/sample.html
8.2.2

8.2.3

1)
2)
3)
4)

8.2.4

8.2.5

8.2.6

8.3
8.3.1

8.3.2
8.3.3
a)
b)
c)
8.3.4

8.3.5

a)
b)
c)

8.3.6
8.3.6.1

8.3.6.2

8.3.6.3

8.3.7

8.3.8

8.4

1)
2)

9
9.1
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

·
·
·
·

a)
b)

�maybe fetch from the bm-sc

Page: 1/4

Page: 4/4

