© ISO/IEC 2014 – All rights reserved

FINAL DRAFT INTERNATIONAL STANDARD

 SET DDOrganization "© ISO/IEC 2015 – All rights reserved" © ISO/IEC 2015 – All rights reserved

 SET LibEnteteISO "ISO/IEC FDIS 23009-5:2015(E)" ISO/IEC FDIS 23009-5:2015(E)

 SET LIBTypeTitreISO " 63"  63

 SET DDTITLE4 "Part 5: Server and network assisted DASH (SAND)" Part 5: Server and network assisted DASH (SAND)

 SET DDTITLE3 "Information Technology — Dynamic adaptive streaming over HTTP (DASH)" Information Technology — Dynamic adaptive streaming over HTTP (DASH)

 SET DDTITLE2 "Élément introductif — Élément central — Partie 5: Titre de la partie" Élément introductif — Élément central — Partie 5: Titre de la partie

 SET DDTITLE1 "Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND)" Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND)

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2015-02-19" 2015-02-19

 SET DDDocStage "(50) Approval" (50) Approval

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR ""  

 SET DDAmno ""  

 SET DDDocSubType ""  

 SET DDDocType "International Standard" International Standard

 SET DDWorkDocNo """"  

 SET DDpubYear "2015" 2015

 SET DDRefNoPart "ISO/IEC 23009" ISO/IEC 23009

 SET DDRefGen "ISO/IEC 23009‑5" ISO/IEC 23009‑5

 SET DDRefNum "ISO/IEC FDIS 23009-5" ISO/IEC FDIS 23009-5

 SET DDSCSecr ""  

 SET DDSecr ""  

 SET DDSCTitle ""  

 SET DDTCTitle ""  

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2"  2

 SET libH2NAME "Heading 2,H2,Head2A,2,Break before,UNDERRUBRIK 1-2,level 2,h2,Heading Two,Prophead 2,headi,heading2,h21,h22,21,Titolo Sottosezione,Head 2,l2,TitreProp,Header 2,ITT t2,PA Major Section,Livello 2,R2,H21,Heading 2 Hidden,Head1,(1.1,1.2,1.3 etc),Œ?©_o‚µ 2" Heading 2,H2,Head2A,2,Break before,UNDERRUBRIK 1-2,level 2,h2,Heading Two,Prophead 2,headi,heading2,h21,h22,21,Titolo Sottosezione,Head 2,l2,TitreProp,Header 2,ITT t2,PA Major Section,Livello 2,R2,H21,Heading 2 Hidden,Head1,(1.1,1.2,1.3 etc),Œ?©_o‚µ 2

 SET libH1NAME "Heading 1,h1,H1,app heading 1,l1,Huvudrubrik,h11,h12,h13,h14,h15,h16,Heading 1_a,Heading 1 (NN),Titolo Sezione,Head 1 (Chapter heading),Titre§,1,Section Head,Prophead level 1,Prophead 1,Section heading,Forward,H11,H12,H13,H111,H14,H112,H15,H16,H17" Heading 1,h1,H1,app heading 1,l1,Huvudrubrik,h11,h12,h13,h14,h15,h16,Heading 1_a,Heading 1 (NN),Titolo Sezione,Head 1 (Chapter heading),Titre§,1,Section Head,Prophead level 1,Prophead 1,Section heading,Forward,H11,H12,H13,H111,H14,H112,H15,H16,H17

 SET LibDesc ""  

 SET LibDescD ""  

 SET LibDescE ""  

 SET LibDescF ""  

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""  

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "50" 50

 SET LibRpl ""  

 SET LibICS ""  

 SET LIBFIL " 4"  4

 SET LIBEnFileName "C:\Users\champelm\Documents\Standards\MPEG-DASH\MPEG 112 - Warsaw\part 5\ISO-IEC_ProposedTextforDIS_23009-5_(E)_r1_redline.doc" C:\Users\champelm\Documents\Standards\MPEG-DASH\MPEG 112 - Warsaw\part 5\ISO-IEC_ProposedTextforDIS_23009-5_(E)_r1_redline.doc 

 SET LIBDeFileName "" 

 SET LIBNatFileName "" 

 SET LIBFileOld ""  

 SET LIBTypeTitreCEN ""  

 SET LIBTypeTitreNAT ""  

 SET LibEnteteCEN ""  

 SET LibEnteteNAT ""  

 SET LIBASynchroVF ""  

 SET LIBASynchroVE ""  

 SET LIBASynchroVD ""   ISO/IEC JTC 1/SC 29    REF DDWorkDocNo \* CHARFORMAT  
Date:   2015-02-19
ISO/IEC DIS 23009-5:2015(E)
ISO/IEC JTC 1/SC 29/WG 11
Secretariat: N15542   REF DDSecr \* CHARFORMAT  
Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND)
Élément introductif — Élément central — Partie 5: Titre de la partie
Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ( CH-1211 Geneva 20

Tel.  + 41 22 749 01 11

Fax  + 41 22 749 09 47

E-mail  copyright@iso.org

Web  www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Contents
Page
ivForeword

Introduction
v
0
References
2
1
Scope
2
2
Introduction
2
3
SAND Reference Architecture and Interfaces
3
4
General Approach for SAND messages Definition
6
5
SAND Messages
6
5.0
Common Envelope for SAND Messages
6
5.1
Metrics and Status Messages
8
5.1.1
    AnticipatedRequests
8
5.1.2
    SessionDescription
8
5.2
PER Messages
9
5.2.1
    ResourceStatus
9
5.2.2
    DaneResourceStatus
11
5.2.3
    ResourceAssignment
12
5.2.4
    MPDValidityEndTime
12
5.2.5
    Throughput
13
5.2.6
    AvailabilityTimeOffset
14
5.2.7
    QoSInformation
15
5.3
PED Messages
16
5.3.1
    BwInformation
16
6
SAND message representation format
17
7
Transport Protocol to Carry SAND Messages
18
8
Signalling of SAND communication channel
19
9
Informative description of SAND Messages
19
9.1
Metrics and Status Messages
19
9.1.1
    AnticipatedRequests
19
9.1.2
    SessionDescription
20
9.2
PER Messages
22
9.2.1
    ResourceStatus
22
9.2.2
    DaneResourceStatus
23
9.2.3
    ResourceAssignment
23
9.2.4
    MPDValidityEndTime
23
9.2.5
    Throughput
24
9.2.6
    AvailabilityTimeOffset
25
9.2.7
    QoSInformation
25
9.3
PED Messages
26
9.3.1
    BwInformation
26
10
Examples of Additional Transport Protocol to Carry SAND Messages (informative)
26
10.1
WebSockets
26
10.1.1
Bootstrapping via the MPD
26
10.1.2
Correlation between clients and delivery nodes
27
11
[INFORMATIVE ANNEX] Use Cases
29
12
[INFORMATIVE ANNEX] DASH Metrics
34
































Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 23009‑5 was prepared by Joint Technical Committee ISO/IEC JTC 1, , Subcommittee SC 29, .

This second/third/... edition cancels and replaces the first/second/... edition (), [clause(s) / subclause(s) / table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.

ISO/IEC 23009 consists of the following parts, under the general title Information Technology — Dynamic adaptive streaming over HTTP (DASH):

· Part 1: Media presentation description and segment formats

· Part 2: Conformance and reference software

· Part 3: Implementation guidelines

· Part 4: Segment encryption and authentication
· Part 5: Server and network assisted DASH Operation (SAND)
Introduction

Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND)
0 References

[1]  "JSON Schema: core definitions and terminology", http://tools.ietf.org/html/draft-zyp-json-schema-04
[2]  ISO/IEC 23009-1:2014, Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation description and segment formats

Note: Use ISO format.
1 Scope
The present specification defines the following elements:

· the SAND architecture which identifies the SAND network elements and the nature of SAND messages exchanged among them,

· the semantics of SAND messages exchanged between the network elements present in the SAND architecture,

· a recommended encoding scheme for SAND messages,

· and the minimum to implement SAND message delivery protocol.
2 Introduction
In recent years, the Internet has become an important channel for the delivery of multimedia using HTTP as its primary protocol. In April 2012, ISO/IEC published MPEG Dynamic Adaptive Streaming over HTTP (DASH) as an international standard that specified formats for the media presentation description (MPD) as well as ISO-BMFF and MPEG-2 TS based segments. As DASH does not define a system or protocol, DASH is considered as an enabler for efficient and high-quality delivery of multimedia content over the Internet.
In order to enhance the delivery of DASH content, Server and network assisted DASH (SAND) specification introduces messages between DASH client and network elements or between various network elements which can improve streaming session by providing information about real time operational characteristics of networks, servers, proxies, caches, CDNs as well as DASH client’s performance.
SAND addresses:
· Unidirectional/bidirectional, point-to-point/multipoint communication with and without session (management) between servers/CDNs and DASH clients,
· Providing content-awareness and service-awareness towards the underlying protocol stack incl. server/network assistance,
· Various impacts on elements of the existing Internet infrastructure such as servers, proxies, caches and CDNs, 

· QoS and QoE support for DASH-based services,
· Scalability in general and specifically for logging interfaces,
· Analytics and monitoring of DASH-based services.
3 SAND Reference Architecture and Interfaces
The SAND architecture is based around three broad categories of elements:

· DASH clients,
· Regular network elements, which are DASH unaware and treat DASH delivery objects as any other object, but are present on the path between origin server and DASH clients, e.g. transparent caches.
· DASH-aware network elements (DANE), which have at least minimum intelligence about DASH (they may for instance be aware that the delivered objects are DASH-formatted objects such as the MPD or DASH segments, and may prioritize, parse or even modify such objects).
Based on these elements, a SAND reference architecture (see Figure 1) is defined. Within this architecture, the following three categories of messages are exchanged:
· Parameters Enhancing Delivery (PED) messages that are exchanged between DANEs,

· Parameters Enhancing Reception (PER) messages that are sent from DANEs to DASH clients,

· Metrics and Status messages that are sent from DASH clients to DANEs.
[image: image1.png]
Figure 1 SAND reference architecture.
In this context, a media origin that serves DASH content may in addition to its primary function also

· receive metric or status messages from the clients, and/or
· send PED parameters to other DANEs 
and is therefore also considered a DANE element. 
Similarly, a third-party server that receives metrics messages from the DASH clients and sends SAND messages to the clients is considered DANE element. Note that the third-party server is not necessarily on the media delivery path so it does not see the DASH segments. However, as it understands the DASH metrics and may produce SAND messages to DASH clients, for example to improve delivery, it is nevertheless considered a DANE element. 

The messages sent by the clients that carry metrics information are called metrics messages. The messages sent by the clients that carry non-metrics information are called status messages. The metrics and status messages have a similar structure, however, it is important to distinguish them since these messages carry information of different nature. 
Based on this terminology, the following interfaces are considered:

· Client-to-DANE (C2D) Interface: Carries metrics messages and status messages.

· DANE-to-DANE (D2D) Interface: Carries PED messages.

· DANE-to-Client (D2C) Interface: Carries PER messages. 

It is important to note that the PED messages may be one-directional or bidirectional between two DANEs depending on the functionality of the DANEs. For example, PED messages are generally sent by a third-party analytics server to a media origin, packager or an edge router to enhance the delivery. In the reverse direction, PED messages containing content-specific data can be sent from the media origin to a third-party analytics server in order to enable content-aware optimizations by the third-party analytics server. 
While the initial goal of SAND is focused on improving the quality experienced by the DASH clients, there are other equally important goals that the industry is after, which are (i) improving the media delivery efficiency inside networks, and (ii) improving content generation and packaging operations. These goals are expected to be fulfilled thanks to messaging over the DANE-to-DANE interface (e.g., an analytics server can ask a DANE to prioritize certain streams over others, or ask the encoder/packager to prepare a certain set of representations). 

It is important to note that the implementation of the SAND architecture is neither mandatory nor necessary for successful DASH-based streaming operation. Moreover, only a portion of the SAND interfaces may be implemented. As it is believed having such flexibility but with a common framework is extremely useful to the industry. Guidelines for a baseline implementation and a minimal interoperability are provided in this document.

Part 1 of this standard [2] gives also an overview of a possible deployment architecture for DASH in 4.1 System description. In light of the SAND reference architecture above, Figure 2 suggests a possible extension to this architecture for a SAND-augmented DASH architecture.

[image: image2.png]
Figure 2 - SAND-augmented DASH architecture
In Part 1 of this standard [2], the DASH client model consists of the DASH access engine, the Media engine and the Application. The DASH access engine operates at the interface with the network when it comes to receiving the MPD and the segments, even though the delivery of the MPD is out-of-scope of MPEG DASH as stated in 5.2.1 General [2]. To support the SAND interface, the DASH access engine becomes also responsible for the communication with the DANEs since the DANEs are network elements providing DASH-level information. Figure 3 extends the original DASH Client model from [2] with the addition of a SAND communication channel.

[image: image3.png]
Figure 3 - SAND-augmented DASH Client model


4 General Approach for SAND messages Definition
This subclause provides a general mechanism to describe SAND messages parameters.

The semantics are defined using an abstract syntax and answer the following questions:

· What is the purpose of the message (Motivation)?

· Who sends and who receives the message (Source and destination)? 

· What are the different fields in the message and what are their meanings (Data representation)?

· How does the sender generate the message (Sender-side logic)?

· How does the receiver use the message (Receiver-side logic)? 

Motivation, source and destination information, and  data representation of SAND messages is normatively described in section 5. Additionally for data representation of SAND messages, a JSON schema syntax specified by [1] is given in section 9. 
Sender-side logic explains how the parameter may be generated. The logic is expressed as a constructor. 

Receiver-side logic explains how the receiver may use the parameter and includes the definition of an on_reception procedure.
5 SAND Messages
This subclause provides the list of parameters that may be present in SAND messages.

5.1 Common Envelope for SAND Messages

Many parameters are common to all SAND messages, and are regrouped here in the common envelope for SAND messages.
Common envelope to SAND messages does not contain mechanism to perform aggregation of SAND messages within the same enveloppe. Message aggregation shall therefore happen at transport layer, for instance by using multipart MIME type delivery.

	Parameter
	Type
	Cardinality
	Description

	CommonEnveloppe
	
	1
	

	
	messageType
	int
	1
	This uniquely identifies the type of SAND message which is carried in the envelope. Allowed values for this field are described in Table 2.

	
	senderID
	string
	0..1
	If present, this is a unique identifier of the message sender. It is up to the sender to provide such a unique identifier. 

	
	messageID
	int
	1
	This field allows receivers of SAND messages to discriminate between several messages sent from the same sender. Identification of the sender may be done thanks to the senderID information or other transport layer information if senderID is not present. Among messages with same sender and same messageType, message with highest messageID value shall take precedence over the others. The maximum value for messageID is decided by senders and shall be high enough for receivers to easily identify which message shall take precedence even when messageID values have looped back to 0.

	
	generationTime
	time
	0..1
	If present, this indicates the UTC time at which the message was generated.

	
	validityTime
	time
	0..1
	If present, this indicates the UTC time after which the validity time of the message is not guaranteed anymore. If not present, validity of messages lasts until next message with same sender, same messageType and higher messageID is received.


Table 1 - SAND message common envelope
	messageType
	Message description

	0
	reserved

	1
	AnticipatedRequests (5.1.1)

	2
	SessionDescription (5.1.2)

	3
	ResourceStatus (5.2.1)

	4
	DaneResourceStatus (5.2.2)

	5
	ResourceAssignment (5.2.3)

	6
	MPDValidityEndTime (5.2.4)

	7
	Throughput (5.2.5)

	8
	AvailabilityTimeOffset (5.2.6)

	9
	QoSInformation (5.2.7)

	10
	BwInformation (5.3.1)

	11..127
	reserved for future ISO use

	128..255
	reserved for private use


Table 2 - messageType values
Editor’s Note : So far, the SAND message envelope does not contain any security information. Securing the distribution of SAND messages could be done by either securing the SAND message or securing the delivery of the message. We encourage contributions on this technical area. Envelope may or may not evolve then.

5.2 Metrics and Status Messages
AnticipatedRequests

Motivation

This parameter allows DASH clients indicating the DANE cache which specific set of segments it is interested in. The intent is to include the segments in representations likely to be requested soon by the client.

Source and destination

	Type     : Metrics
Sender   : DASH client

Receiver : DANE


Data representation
	Parameter
	Type
	Cardinality
	Description

	AnticipatedRequests
	array
	1..N
	List of anticipated requests

	
	sourceURL
	string
	1
	URL for a segment of a given representation.

	
	range
	string
	1
	This is the byte range specification when the segment is only a part of the content referred to by sourceURL.

	
	targetTime
	time
	1
	64bits NTP timestamp which gives UTC time for which we want the caching prediction.


Table 3 - AnticipatedRequests parameters

	













	
























SessionDescription

Motivation
This parameter groups all information allowing DASH clients to implement a cooperative behaviour when sharing network resources (example access link in a home network).
Source and destination
	Type:    : Metrics

Sender   : DASH client
Receiver : other DASH client and DANE (e.g. gateway)


Data representation
	

	Parameter
	Type
	Cardinality
	Description

	SessionDescription
	object
	1
	

	
	operationPoints
	array
	1..N
	List of information regarding suitable operation points for current play time.

	
	
	bandwidth
	integer
	1
	A bandwidth value expressed in bits per second. This value shall be computed from the MPD by summing bandwidths of all components the clients would use for working at this operation point. If playback rate is not 1, bandwidth shall be modified accordingly.

	
	
	quality
	integer
	0..1
	An optional value describing the quality of the current operation point.

	
	
	minBufferTime
	Integer
in ms
	0..1
	Optional information extracted from the MPD regarding current operation point.

	
	weight
	integer
	0..1
	A user allocated optional value which indicates which session(s) should be privileged in the bandwidth allocation process. The exact use depends on the allocation strategy.

	
	allocationStrategy

	urn
	0..1
	This identifies the bandwidth distribution algorithm preferred by the client for resource sharing.

	
	mpdUrl
	string
	0..1
	If present, this is the URL to the MPD related to the present message.


Table 4 - SessionDescription parameters

	















	































































































































5.3 PER Messages
ResourceStatus

Motivation
This parameter allows DASH clients to have – in advance – knowledge of segments availability including the caching status of the segment(s) in the DANE. The status may be different for different baseURL or different Representation IDs repID used, allowing to signal availability of content dependent on the network delivering it, as e.g. the use case of MBMS with a unicast fall-back. In another example, this may for example be because the resources are being delivered over a certain network and are expected to be selected by the DASH client regardless of the decision of the rate adaptation algorithm. 
The message expresses the status of the resource access at the current time. The DASH client should assume that this status persists until it is informed about a change of the status.
Source and destination
	Type     : PER

Sender   : caching DANE
Receiver : DASH client (and intermediate DANEs)


Data representation
	

	Parameter
	Type
	Cardinality
	Description

	ResourceStatus
	object
	1
	Resource Status Information for segments identified from a base URL.

	
	baseURL
	string
	1
	Provides the base URL for the  associated resources, i.e. the status holds for all resources referenced by this base URL.

	
	status
	enum
	1
	Provides the status of all associated resource to the base URL, which can be available, unavailable or cached. Cached refers to the case that the resource is cached in the DANE. Available means that a request is expected to be responded with a 2xx code and unavailable means that it is expected that the response would result in a 4xx code.

	
	reason
	string
	1
	Provides some textual information of the reason, e.g. ‘you are in broadcast mode’.


Table 5 - ResourceStatus (with baseURL) parameters
	Parameter
	Type
	Cardinality
	Description

	ResourceStatus
	object
	1
	Resource Status Information for segments identified from a representation ID.

	
	repID
	string
	1
	Provides the value for the representation id, i.e. status holds for all resources associated to a Representation with the value of the parameter.

	
	status
	enum
	1
	Provides the status of all associated resource to the Representation, which can be available, unavailable or cached. Cached refers to the case that the resource is cached in the DANE. Available means that a request is expected to be responded with a 2xx code and unavailable means that it is expected that the response would result in a 4xx code.

	
	reason
	string
	1
	Provides some textual information of the reason, e.g. ‘you are in broadcast mode’.


Table 6 - ResourceStatus (with representation ID) parameters


	






























	

















DaneResourceStatus

Motivation
This parameter allows DANEs to signal the available and possibly anticipated to be available data structures to the DASH client and also signal which data structures are unavailable. This method is complementary to the resource status mentioned above as it allows to express the available segments at the time of the status message. The resources are either explicitly listed or provided as a list, or they are provided by some abbreviated message format. Typical use cases are as follows:

· the DANE may join an upstream multicast/broadcast service that delivers segments close to segment availability time. This means that Segments are available only from a specific time onwards in the cache.

· certain segments are lost and this is detected by the DANE to be lost and unavailable.
In order to address this, an extension of the existing SAND messages is considered. Some more details are discussed in the following.
Source and destination
	Type     : PER

Sender   : caching DANE
Receiver : DASH client (and intermediate DANEs)


Data representation
	Parameter
	Type
	Cardinality
	Description

	DaneResourceStatus
	
	1
	Provides the status of the resources listed below.

	
	status
	string
	1
	specifies the resources that can be assigned to this type. The define types are documented in Table 8.

	
	
	resource
	anyURI
	0 … N
	Provides a resource for which the status applies

	
	
	resourceGroup

	string
	0 ... N
	Provides a group of resources for which the status applies. 


Table 7 - DaneResourceStatus parameters
	Status
	Semantics

	cached
	Resource is available in DANE

	unavailable
	Resource is not available in the DANE and request will result in 404

	unknown
	Resource is not available in the DANE and request will be forwarded to origin server

	promised
	Resource will be available in the DANE at the time announced in the Media Presentation


Table 8 - allowed values for status parameter
ResourceAssignment

Motivation
This message allows the DANE to send to DASH clients competing for bandwidth over the same network information about how much bandwidth they should use in order to stay in a fair sharing of the total bandwidth. 
This message is usually send to DASH clients as a response to a SessionDescription SAND message and is usually sent by a DANE who acts as the resource sharing authority.
Source and destination
	Type     : PER

Sender   : DANE
Receiver : DASH client 


Data representation
	Parameter
	Type
	Cardinality
	Description

	ResourceAssignment
	object
	1
	Response message from the coordinator that indicates the results of the bandwidth sharing operation.

	
	clientID
	string
	1
	The clientID identifies the target receiver of this message. This field shall use the same value as the senderID of the SessionDescription message sent by the client.

	
	resourcePrice
	int
	0..1
	The resource price is the price of the bandwidth resource that has to be used by the receiver in its utility to price tradeoff to determine the optimal operation point. The operation point selected will maximize the utility to price ratio.

	
	bandwidth
	int
	1
	This fields contains the assigned bandwidth to the identified client. The unit is defined in bits per second.


Table 9 - ResourceAssignment parameters
MPDValidityEndTime

Motivation
	


This message provides the ability to signal to the client that a given MPD, whose @type is set to 'dynamic' and @minimumUpdatePeriod is present, can only be used up to at a certain wall-clock time.
NOTE - Sending the message may be motivated by operational considerations such that DASH clients may fetch a new version of the MPD faster than they were planning to.
Source and destination

	Sender   : DANE

Receiver : DASH Client

Type     : PER 


Data representation

	Parameter
	Type
	Cardinality
	Description

	MPDValidityEndTime
	object
	1
	

	
	publishTime
	date-time
	0..1
	MPD publish time attribute of the corresponding MPD.

	
	validityEndTime
	date-time
	1
	Wall-clock time at which the MPD will no more be valid.

	
	mpdUrl
	string
	1
	The recommended URL to use when fetching the next MPD update.


Table 10 - MPDValidityEndTime parameters

	





	












	






















Throughput

Motivation

The parameter allows DASH clients to have – in advance – knowledge of the throughput characteristics and the guarantees along with this from the DANE to the DASH client. The status may be different for different baseURL or different Representation IDs repID used, allowing to signal throughput characteristics dependent on the network delivering it. This may for example be used in case some QoS is provided on the access link between the DANE and the DASH client or if the data is cached in a local device. This message may apply in the case the DANE is located in a different device from the DASH client, and communicate with the DASH client via a network, e.g. a mobile network.

The message expresses the throughput status of the network at the current time. The DASH client should assume that this status persists until it is informed about a change of the status.

Source and destination
	Type     : PER
Sender   : caching DANE

Receiver : DASH client (and intermediate DANEs)


Data representation
	Parameter
	Type
	Cardinality
	Description

	Throughput
	object
	1
	

	
	baseURL
	string
	1
	Provides the base URL for the associated resources, i.e. the throughput holds for all resources referenced by this base URL.

	
	guaranteedThroughput
	unsigned int
	1
	Specifies a guaranteed throughput in bit/s. Provides the guarantee for the throughput in a sense that the download time of a resource of size S bytes and from receiving the first byte to receiving the last byte is at most S*8 divided by the value of the attribute. This guarantee is provided with the below value of the percentage of certainty and holds for a request from the DASH client w/o any other concurrent HTTP requests.

	
	percentage
	unsigned int
	0..1
	Specifies the certainty of the above guarantee. The certainty of the guarantee is expressed as a percentage from 0 to 100. If not present, the default value is 100.


Table 11 - Throughput (with baseURL) parameters
	Parameter
	Type
	Cardinality
	Description

	Throughput
	object
	1
	

	
	repID
	string
	1
	Provides the value for the representation id, i.e. throughput holds for all resources associated to a Representation with the value of the parameter.

	
	guaranteedThroughput
	unsigned int
	1
	Specifies a guaranteed throughput in bit/s. Provides the guarantee for the throughput in a sense that the download time of a resource of size S bytes and from receiving the first byte to receiving the last byte is at most S*8 divided by the value of the attribute. This guarantee is provided with the below value of the percentage of certainty and holds for a request from the DASH client w/o any other concurrent HTTP requests.

	
	percentage
	unsigned int
	0..1
	Specifies the certainty of the above guarantee. The certainty of the guarantee is expressed as a percentage from 0 to 100. If not present, the default value is 100.


Table 12 - Throughput (with representation ID) parameters


	















	














	


AvailabilityTimeOffset

Motivation

The parameter allows DASH clients to have – in advance – knowledge of the availability time offset from the DANE to the DASH client. The status may be different for different baseURL or different Representation IDs repID used, allowing to signal availability time offset dependent on the network delivering it. This is typically the result of the different paths and processing operations that the Segments of the Representation that is sent over a one network undergo compared to the segments of Representations that are delivered over another network. The intention is to adjust the segment availability start times to the new path and bring the DASH client to a correct operation point. This availability offset may be positive or negative and should be taken into account by the DASH client to avoid buffer underflows when switching between Representations and also to avoid 404 messages as much as possible. 

The message expresses the status of the network at the current time. The DASH client should assume that this status persists until it is informed about a change of the status. The DANE should avoid significantly changing the parameters for one resource as it may result in scheduling/playback problems in the DASH client.

Source and destination

	Type     : PER
Sender   : caching DANE

Receiver : DASH client (and intermediate DANEs)


Data representation
	Parameter
	Type
	Cardinality
	Description

	AvailabilityTimeOffset
	object
	1
	

	
	baseURL
	string
	1
	Provides the base URL for the associated resources, i.e. the offset holds for all resources referenced by this base URL.

	
	offset
	int
	1
	Specifies the offset in milliseconds that needs to be applied to the segment availability start time of the resources accessible through the indicated location or representation identifier.


Table 13 - AvailabilityTimeOffset (with baseURL) parameters
	Parameter
	Type
	Cardinality
	Description

	AvailabilityTimeOffset
	object
	1
	

	
	repID
	string
	1
	Provides the value for the representation id, i.e. offset holds for all resources associated to a Representation with the value of the parameter.

	
	offset
	int
	1
	Specifies the offset in milliseconds that needs to be applied to the segment availability start time of the resources accessible through the indicated location or representation identifier.


Table 14 - AvailabilityTimeOffset (with representation ID) parameters

	















	














	


QoSInformation
Motivation

A DASH client can take the available QoS information into consideration when requesting representations such that the consumed content bandwidth remains within the limits established by the signalled QoS information. As such, we believe that there is value in enabling signaling of QoS parameters to the DASH client in order to be used for adaptation purposes.  

Source and Destination

	Type     : PER
Sender   : Server, DANE or 3rd party server 

Receiver : DASH client


Data Representation
	Parameter
	Type
	Cardinality
	Description

	QoSInformation
	object
	1
	

	
	gbr
	int
	0..1
	Guaranteed bit rate in kbps between the DANE and DASH client, denoting the end to end guaranteed bit rate at the IP layer bearer that the service provider delivers to the DASH client.

	
	mbr
	int
	0..1
	Maximum bit rate in kbps between the DANE and DASH client, limiting end to end bit rate that the service provider delivers the DASH client and denoting the end to end maximum bit rate at the IP layer bearer that the service provider delivers to the DASH client.

	
	delay
	int
	0..1
	Packet layer budget in milli-seconds (ms) denoting the maximum packet delay encountered at the IP layer with a confidence level of 98 percent. For TCP-based video streaming applications relevant for DASH, it is recommended that Delay equals 300ms.

	
	pl
	int
	0..1
	Packet loss parameter, where packet loss rate equals 10^(-PL/10). For TCP-based video streaming applications relevant for DASH, it is recommended that PL=60 such that the packet loss rate equals 10^(-6).”


Table 15 - QoSInformation parameters

	






	





5.4 PED Messages
BwInformation
Motivation
Minimum and maximum bandwidth information can be extracted from the MPD and shared with the service provider or operator to help facilitate the derivation of network QoS parameters at the DANE or another network element, e.g., guaranteed bitrate (GBR) and maximum bitrate (MBR). The exact mapping of QoS parameters from minimum and maximum bandwidth is implementation specific and can depend on other factors such as service provider policy, application requirements and user subscription information.
Source and Destination
	Type     : PED
Sender   : Server, DANE or 3rd party server 

Receiver : DANE or 3rd party server


Data representation
	Parameter
	Type
	Cardinality
	Description

	BwInformation
	object
	1
	

	
	minBandwidth
	int
	0..1
	Minimum required bandwidth of the service, extracted from the MPD given by the sum of all MPD@minBandwidth of all media components simultaneously (not mutually exclusive) selectable by the DASH client plus HTTP/TCP/IP overhead and TCP messages for flow control. 

If this attribute is not present then minBandwidth is given by the sum of MPD@bandwidth attributes of all media components of the available media presentation corresponding to representations or subrepresentations with lowest bandwidth simultaneously (not mutually exclusive) selectable by the DASH client plus HTTP/TCP/IP overhead and TCP messages for flow control.

If the client is expected to access multiple MPDs, then minBandwidth is calculated by summing up the minimum bandwidth values extracted from each MPD.
 

	
	maxBandwidth
	int
	0..1
	Maximum required bandwidth of the service, extracted from the MPD given by the sum of all MPD@maxBandwidth of all media components simultaneously (not mutually exclusive) selectable by the DASH client plus HTTP/TCP/IP overhead and TCP messages for flow control. 

If this attribute is not present then maxBandwidth is given by the sum of MPD@bandwidth attributes of all media components of the available media presentation corresponding to representations or subrepresentations with highest bandwidth simultaneously selectable (not mutually exclusive) by the DASH client plus HTTP/TCP/IP overhead and TCP messages for flow control.

If the client is expected to access multiple MPDs, then maxBandwidth is calculated by summing up the maximum bandwidth values extracted from each MPD. 




	
	
	
	

	
	
	
	

	
	
	
	




	
	
	
	




	
	
	
	



	






	





6 SAND message representation format 
The present clause introduces XML as the recommended format for SAND messages data representation format. It is not mandatory for SAND network elements to implement SAND messages in XML format as other data representation formats (such as JSON) could be used. 
In order to maximize interoperability between SAND network elements, XML is though the recommended data representation format.
How should we editorially do it and what are the requirements met by the XML format definition ?
· Common Enveloppe (versioning and extensibility ensured)
· One message per XML document.
· Easy extensibility (future SAND messages, private messages, message extensions)
· MIME type definition (to be exposed in content-type).
Main two choices agreed for XML specification are:
· XML schema per SAND message ?

· One GIANT XML schema for all messages ?

7 Transport Protocol to Carry SAND Messages 
This section defines HTTP as the minimum transport protocol that shall be at least supported by SAND enabled elements. It does not preclude that other additional transport protocols (as described in clause 10) could also be implemented.
The following scenarios are considered for exchange between the DANE and the DASH client.

· Client assistance: A scenario for which the message is provided as auxiliary information for the client, but the service will be continued even if the client ignores the message. This is for example the case when the service provider provides information on the availability of additional networks that may be accessed by the DASH client to request the content. For example protocols and methods, see clause 7.1.

· Client Enforcement: A scenario for which the client requires to act, the network provides suitable alternatives for future requests. The DANE cannot or is not willing to respond to the request with a valid resource, but provides suitable alternatives. For example protocols and methods, see clause 7.2.

· Error Cases: A scenario for which the client is informed that the request is not valid and the network provides the reason and possible resolutions for the problem. The DANE cannot respond to the request with a valid resource. For example protocols and methods, see clause 7.3.
7.1 
Assistance

For assistance, a suitable method is the use of a dedicated HTTP header field that indicates a notification that the DANE has SAND messages to send to the DASH client. Upon receiving an HTTP entity that contains the SAND header field in its entity head, the DASH client issues a GET request to the indicated element to receive the SAND message.

We propose the following ABNF syntax for the header field:

SAND-header-field = " MPEG-DASH-SAND" ":" element-address

element-address = absolute-URI 

The field absolute-URI takes the syntax from RFC3986. The SAND header field provides the URI to the SAND message that is to be fetched by the DASH client using an HTTP GET method. 

7.2 
Enforcement

For enforcement, a suitable method is the use of a 300 Multiple Choices response with the following details:

· The response includes an entity containing a SAND message. The entity format is specified by the media type given in the Content-Type.

· The response should not include the Location field to avoid the use of the Location field value by the user agent for automatic redirection. 

This response is cacheable unless indicated otherwise.

7.3 
Error Case

For error cases, a suitable method is the use of a suitable 4xx error code. The response may include a SAND message from which the client can deduce the reason for the error code and potential resolution of the problem. 

8 Signalling of SAND communication channel 
Clause 7.1 introduces the use of HTTP header extensions in order to signal to the client that SAND messages are available at a given URI. While HTTP is the minimum to implement protocol for carrying SAND messages, other additional protocols (such as WebSockets, see clause 10) could be used too. The additional signalling mechanism described in the present clause is therefore intended for such transport protocols.

In order to signal the SAND communication channel to DASH clients, the DANE announces the presence of the SAND channel via the MPD using the sand:Channel element defined in the “urn:mpeg:dash:sand:2015” namespace. The namespace prefix is “sand:”.

	Element or Attribute Name
	Use
	Description

	
	Channel
	
	provides  information about a SAND channel

	
	
	@endpoint
	 M (string)
	provides the endpoint to the SAND channel. The endpoint conforms to the URI specification, RFC3986. 

	Legend: 

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

Elements are bold; attributes are non-bold and preceded with an @.


NOTE ( The scheme protocol of the endpoint specifies which protocol the DASH client shall use to initiate the communication with the SAND channel. See 10.1.1 for usage example .

Informative description of SAND Messages 
8.1 Metrics and Status Messages

AnticipatedRequests

Sender-side logic
	AnticipatedRequests()

{

  t = get_start_time_for_next_segment()

  reprs = get_all_representations_for_time(t)

  result = []

  for r in reprs

  do

    result.append({"sourceURL": r.sourceURL, "range": r.range,

                   "targetTime": t})

  end for

}


Receiver-side logic
	// DANE behaviour
on_reception(AnticipatedRequests)

{

  cached = cachingInformation(AnticipatedRequests)

  // A recursive collection may be done with upstream DANEs

  // This is optional, and if the parameter is attached to the request

  // this happens only when the current request is not served from cache

  if recursive

  then

    not_cached = []

    for item in AnticipatedRequests

    do

      if ([item.sourceURL, item.range]) not in cached

      then

        not_cached.append([item.sourceURL, item.range])

      end if

    end for

    send_param_upstream(AnticipatedRequests=not_cached)

    wait_for_reception_of_cachingInformation()

    cached += cachingInformation

  end if

  send_params(isCached=cached) // send aggregated results downstream

}


SessionDescription

Sender-side logic

	// DASH client

SessionDescription()

{
  clientId = get_my_ip_address() + get_unique_client_id_in_device()

  reprBandwidths = []

  for repr in MPD.get_representations_for_time(now)

  do

    if is_suitable_to_play(repr)

    then

      reprBandwidths.append(repr.get_bandwidth()) // a margin may be added

    end if
  end for

}


Receiver-side logic

	// DASH client

on_reception(SessionDescription)

{
  if SessionDescription.bandwidthDistributionSchemeId != mySchemeId

  then

    return

  end if

  if SessionDescription.clientId not in all_sessions

  then

    // The newcomer needs to know our information

    send_param(all_sessions[my_client_id])

    // This session is new, note its starting time

    session_start_times[SessionDescription.clientId] = now()

  end if

  // Sort reprBandwidths once now, this simplifies usage later

  SessionDescription.reprBandwidths.sort()

  // store session information for future use
  all_sessions[SessionDescription.clientId] = SessionDescription
}

// Use of session information in adaptation algorithm,

// for all collaborative clients

select_representation_premium_privileged()

{

  remaining_bw = linkCapacity //c.f. Error! Reference source not found.
  session_list = get_sessions()

  session_list.reverse_sort_according_to_start_times()
  count = session_list.length

  for session in session_list

  do

    allocated = max(session. reprBandwidths)

    i = session.reprBandwidths.index_of(allocated)

    while allocated > remaining_bw / count and i > 0

    do

      i -= 1

      allocated = session.reprBandwidths[i]

    end while

    if allocated > remaining_bw

    then

      // no suitable representation for available bandwidth share

      session.allocated_index = -1

    else

      remaining_bw -= allocated

      session.allocated_index = i

    end if

    count -= 1

  end for
    // Now all sessions have tried to evenly share the bandwidth. The remaining
    // bandwidth will now be shared among clients on a first come first serve
    // basis.

    session_list.sort_according_to_start_times() // favor oldest sessions

    improvement_made = True

    while improvement_made and remaining_bw > 0

    do

      improvement_made = False

      for session in session_list

      do

        if session.allocated_index < session.reprBandwidths.length – 1

        // not already max

        then

          next_bitrate = session.reprBandwidths[session.allocated_index + 1]

          if session.allocated_index == -1

          then

            current_bitrate = 0

          else

            current_bitrate = session.reprBandwidths[session.allocated_index]

          end if

          if (next_bitrate - current_bitrate) <= remaining_bw

          then // this session can get a bit more bandwidth

            session.allocated_index += 1

            remaining_bw -= (next_bitrate - current_bitrate)

            improvement_made = True

          end if

        end if

      end for

    end while

  res =  get_representation_for_level(all_sessions[my_session_id].allocated_index)
  // We may want here to request a lower representation (e.g. for rebuffering)

  return res
}

select_representation_everybody_is_served()

{

// step 1: provide minimum bandwidth to a maximum number of clients.

  remaining_bw = linkCapacity 

  session_list = get_sessions(p)

  session_list.sort_according_to_start_times()

  for session in session_list

  do

    if remaining_bw >= session.reprBandwidths[0] then

      session.allocated_index = 0  // chosen representation is first one
                                   // (minimum bandwidth)

      remaining_bw -= session.reprBandwidths[0]

    else

      session. allocated_index = -1 // no representation

    end if

  end for

// at this point, provided there is enough bandwidth, all sessions have been
// allocated their minimum bandwidth, starting with earliest sessions.
// If total bandwidth is not enough, earliest sessions are served first.

  // step 2: distribute remaining bandwith (until it is exhausted)

  // between all clients, starting with earliest ones

  improvement_made = True
  while remaining_bw > 0 and improvement_made

  do
    improvement_made = False
    session_list = get_sessions()

    session_list.sort_according_to_start_times()

    for session in session_list

    do

      i = session.allocated_index
      if i < session.reprBandwidths.length – 1 // not already max
      then
        bw_upgrade = session.reprBandwidths[i+1] - session.reprBandwidths[i] 

        if remaining_bw >= bw_upgrade

        then

          // there is enough bandwidth to upgrade to next representation

          improvement_made = True   

          session.allocated_index += 1

          remaining_bw -= bw_upgrade

        end if

      end if

    end for

  end while

  res =  get_representation_for_level(all_sessions[my_client_id].allocated_index)
  // We may want here to request a lower representation (e.g. for rebuffering)

  return res
}


8.2 PER Messages

ResourceStatus

Sender-side logic

	// DANE behaviour
// First example: generate status associated to baseURL

ResourceStatusBaseURL()

{
  result = []
  for base_url in list_baseURL_from_MPD()

  do

    if same_status_for_all_reprs_with_base(base_url)

    then

      result.append({"baseURL": base_url, "status": common_status})

    end if

  done

}

// Second example: generate status per repId
// candidate_list is a list of candidate representations
// for which we want to test the caching status.

// This value may come from the anticipatedRequest parameter

// received from the client or a downlink DANE
// Note: here we assume representations never have same id

//       to simplify the pseudo code example
ResourceStatusRepId(candidate_list)

{
  result = []
  for repr in candidate_list

  do

    result.append({"repId": repr.id, "status": repr.get_status()})

  end for
}


Receiver-side logic

	// DASH client

on_reception(ResourceStatus)

{

  store_status_information();

  if (source NOT trusted)

       return;

  if (identifier is URL) {

     foreach (baseURL in MPD) {

          if (baseURL == identifier && status == cached )

             set weight = 0.8;

          else if (baseURL == identifier && status == available )

             set weigth = 0.2;

     }

  } else if (identifier is repid && available) {

      switch_to(identifier);
}


DaneResourceStatus
Sender-side logic
Receiver-side logic

ResourceAssignment
Sender-side logic
Receiver-side logic

MPDValidityEndTime

Sender-side logic

	// Example of MPDValidityEndTime constructor

MPDValidityEndTime ()

{

  // Get the publishTime of the MPD host by cdn1.

  publishTime = getPublishTime("http://cdn1.example.com/live.mpd") 

  // Here we want the DASH clients to fecth a new version of the MPD as soon as they receive the message.

  validityEndTime =  now()  

  // Indicates the new MPD URL.

  mpdUrl = "http://cdn2.example.com/live.mpd"

}


Receiver-side logic

	// Example of MPDValidityEndTime callback

on_reception(MPDValidityEndTime)

{

  if MPDValidityEndTime.PublishTime is myCurrentMpd.publishTime

  then

    if MPDValidityEndTime.mpdUrl not ""

    then

      nextMpdUrl = MPDValidityEndTime.mpdUrl

    else

      nextMpdUrl = myCurrentMpd.location

    end if

    if MPDValidityEndTime.validityEndTime > now()

    then

      schedule(

        updateMpd(httpGet(nextMpdUrl)), MPDValidityEndTime.validityEndTime)

    else

      // Immediate update because MPD is no more valid

      updateMpd(httpGet(nextMpdUrl))

    end if

  end if

}


Throughput

Sender-side logic
	// DANE behaviour
// First example: generate throughput associated to baseURL

ThroughputBaseURL()

{

  result = []

  for base_url in list_baseURL_from_MPD()

  do

    if same_throughout_for_all_reprs_with_base(base_url)

    then

      result.append({"baseURL": base_url, "throughput": common_throughput})

    end if

  done

}


Receiver-side logic
	// DASH client
on_reception(Throughput)

{

  store_throughput_information();

  if (source NOT trusted)

       return;

  if (identifier is URL) {

     foreach (baseURL in MPD) {

          if (baseURL == identifier && guaranteedThroughput > Representation@bandwidth && percentage == 100)

          switch_off_bandwidth_estimation();

     }

  } else if (identifier is repid) {

      switch_to(identifier);

}

	


AvailabilityTimeOffset

Sender-side logic
	// DANE behaviour
// First example: generate availability time offset associated to baseURL

AvailabilityTimeOffsetBaseURL()

{

  result = []

  for base_url in list_baseURL_from_MPD()

  do

    if same_offset_for_all_reprs_with_base(base_url)

    then

      result.append({"baseURL": base_url, "offset": common_offset})

    end if

  done

}


Receiver-side logic
	// DASH client
on_reception(AvailabilityTimeOffset)

{

  store_offset_information();

  if (source NOT trusted)

       return;

  if (identifier is URL) {

     foreach (baseURL in MPD) {

          if (baseURL == identifier)

          adjust_availability_time(identifier, offset);

     }

  } else if (identifier is repid) {

      switch_to(identifier);

}

	


QoSInformation
Sender-side logic
	QoSInformation()

{

send_qosInformation(&gbr, &mbr, &delay, &pl);

}


Receiver-side logic
	Adaptation(QoSInformation)

{

selected_representation = max(&gbr,min(&mbr,selected_representation))

}


8.3 PED Messages

BwInformation
Sender-side logic
	BwInformation()

{

send_bwInformation(&minBandwidth, &maxBandwidth, &clientID);

}


Receiver-side logic
	QoSDerivation(BwInformation)

{

derive_QoS(&minBandwidth, &maxBandwidth, &clientID);

}


9 Examples of Additional Transport Protocol to Carry SAND Messages (informative)

9.1 WebSockets

Bootstrapping via the MPD

This section addresses the signalling of the SAND channel set-up information to the DASH clients thanks to the addition of information in the MPD.

From the DASH client's perspective, the entry point of any DASH operations is the Media Presentation Description. That is why MPEG DASH part 1 [2] recommends protecting as much as necessary the delivery and the content of the MPD so that DASH clients can safely trust the information provided in the MPD. As a result, it appears adequate that the MPD also carries the information pertaining to the SAND interface. Figure 4 provides an example MPD that contains such information.

	<?xml version="1.0" encoding="UTF-8"?>
<MPD …>

  <sand:Channel endpoint="wss://sand.example.com"></sand:Channel>

  <BaseURL>http://cdn1.example.com/</BaseURL>
  <BaseURL>http://cdn2.example.com/</BaseURL>

  <Period>
    <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40" lang="en" subsegmentAlignment="true" subsegmentStartsWithSAP="1">
      <Representation id="1" bandwidth="64000">
        <BaseURL>7657412348.mp4</BaseURL>
      </Representation>
    </AdaptationSet>

    <AdaptationSet mimeType="video/mp4" codecs="avc1.4d0228" subsegmentAlignment="true" subsegmentStartsWithSAP="2">
      <Representation id="2" bandwidth="256000" width="320" height="240">
        <BaseURL>8563456473.mp4</BaseURL>
      </Representation>
    </AdaptationSet>
  </Period>
</MPD>


Figure 4 – SAND channel set-up information provided in the MP
Upon reception of the MPD, the DASH client parses the MPD. The sand:Channel element indicates that the DASH client may initiate a SAND channel for assistance. The endpoint attribute specifies the type of interface (here, the interface is implemented over a WebSocket connection) and the actual endpoint to which the DASH client must connect in order to set the SAND channel up. 
NOTE – For the same security reasons as for the MPD delivery, it is recommended that WebSocket-based SAND channels run over TLS. Hence the use of "wss" for the URI scheme in the endpoint attribute. See 10.6. Connection Confidentiality and Integrity in [3] for more details.

NOTE – The attribute sand:Channel@endpoint element allows the signalling of other SAND network interfaces, e.g. HTTP headers.


When the connection to the SAND channel is successful (HTTP handshake, upgrade to WebSocket and possibly authentication mechanism), the DASH client starts listening for incoming messages. In addition, the DASH Client may also use the SAND channel to send metrics and status messages whenever it is opportune or explicitly requested.

Correlation between clients and delivery nodes

In most of the SAND messages discussed so far, there is need to correlate a DASH client with a given delivery node. For instance in [5], the SAND message tackles the problem of server failure in the live context. When the monitoring function of the CDN has detected a problem on a given delivery node, it notifies all the concerned DASH clients that the current version of the MPD is no longer valid. But to do so, the CDN needs to know which clients were retrieving segments from the failing server.

Tracking the requests of thousands of clients on possible hundreds of servers is a cumbersome task. Currently it is merely performed in an offline fashion, for example for billing purposes. Advantageously, the DASH clients could keep the DANE informed on which delivery nodes they are requesting the segments from. In such a scenario, quick actions can be taken based on this real-time reporting.

To easily correlate DASH clients and delivery node, a possible solution is to insert client-specific data in the SAND channel set-up information. The flexible URL parameter insertion of DASH part 1 Amendment 2 could be efficiently used for that purpose. Figure 5 gives an example where the DASH client is being identified by the DANE as it connects to the SAND endpoint.

	<?xml version="1.0" encoding="UTF-8"?>
<MPD …>

 <sand:Channel endpoint="wss://sand.example.com?$querypart$ ">

  <EssentialProperty schemeIdUri= = "urn:mpeg:dash:urlparam:2014"
        <UrlQueryInfo QueryString="client=abc&mpd=xyz"/>

  </EssentialProperty>

</sand:Channel>

[…]

</MPD>


Figure 5 - Advanced SAND channel set-up information
In practice, when a DASH client decides to connect to the DANE, it shall use the following URI wss://sand.example.com?client=abc&mpd=xyz. Upon reception of the request, the DANE is able to link this SAND-assisted DASH client with a given DASH client identifier and a given MPD. Consequently, the DANE is able to deduce which delivery nodes this DASH client retrieves the segments from. Please note that this is merely an example and any other contextual information that would help the DANE operations might be transmitted via this method.

10 [INFORMATIVE ANNEX] Use Cases
Editor’s note: This section describes all use cases that were considered for the definition of SAND. A small set of selected use cases among the whole list of use cases will be verified with the messages defined in Clause 5, in terms of their suitability, applicability and completeness. Inputs are solicited for MPEG#113.
10.1 Use Case 1: Network Mobility

A service provider deploys the football distribution as a media presentation based on DASH. The service provider is collaborating with a mobile operator, which deploys CDNs within its distribution network. The mobile operator specifically provides the service through a 3G network as well as to a WiFi network. Each network is supported by an individual CDN. In order to avoid overload of the 3G network, only a subset of the Representations are provided in the 3G network. While shopping with his wife, Jari Ragados watches the service in the mall where there is WiFi coverage. After done with shopping, they move to an outdoor cafe without WiFi coverage, but the service is continuously played by the DASH client, just with lower quality.

10.2 Use Case 2: Mobility and Coverage Extension for MBMS-Based Service

The son of Jari, Jarison, is watching the game live in the stadium. Jari picks up his son and drives to the stadium and when he gets there, the same service is provided over DASH+MBMS-based broadcast in HD quality. In addition, multiple views are provided close to the stadium, one being close from the seat where Jarison sits. Jari switches to this view which is only provided over unicast while still using the main audio distribution over MBMS. After the game, Jari and Jarison leave the stadium, but continue to watch the interviews from the stadium in the car served through a 3G network.

10.3 Use Case 3: Radio Congestion

Jari and Jarison enter a congested radio area. The mobile operator wants to restrict the required bitrate, but ensure that a basic video quality is maintained for its regular users and some higher quality for premium users. For this purpose they assign certain bitrate quality levels to different users on their HTTP connections carrying DASH-content.

10.4 Use Case 4: Static and Dynamic Policies

In the use case 1, the mobile operator may have certain policies that in hybrid WiFi and 3G coverage, clients are expected to use the WiFi network. These policies may be provided to the DASH client in a static or dynamic fashion. Other policies and information may be provided to the client such as the cost of a certain access network, etc.

10.5 Use Case 5: Server Overload Scenario

In the following scenario a DASH-based service is unable to communicate with the clients. The server hosting the media segments and/or the MPD might face severe congestion/overload, making it impossible for the DASH clients to obtain any segment or MPD. The best course of action would be to redirect the DASH client to a different server or CDN, but the inability of the server to serve data also makes it impossible to inform the client to do so. Furthermore, new DASH clients, unaware of any server failure, will join the rest of the clients which will only make the situation worse. 

10.6 Use Case 6: Server-Controlled DASH

In the use case 3, Jari and Jarison have their own favorite devices equipped with DASH clients from different vendors.  Since both of them are premium users, the mobile operator wants to not just maintain a same bitrate quality level to their HTTP connections but also ensure that they really get the higher video quality and consistent watching experiences when coming to start-up time, quality switching with changing network conditions, dynamic event notification and advertisement insertion, despite the different vendor implemented clients may have their own adaptation strategies (e.g., aggressive or obedient).

10.7 Use Case 7: Distribution Overlay and QoE Measurement

End to end content providers use, simultaneously, multiple CDNs, private and public peering arrangements to deliver their content using Internet to the end consumers.  The choice via which route the content is send to the player is based, from a technical perspective, mainly on latency / throughput of the network.

This information is available either via monitoring software or via the APIs of the CDNs. The limitation of this approach is the (subjective) info is only available from parts of the network. A more robust way is when the player reports player state information (buffer under run, experienced latency, packet loss) back to the content provider. In a more pro-active scenario the different routes are tested via this mechanism in order not to have the state of the used network only.

10.8 Use Case 8: Managed and Hybrid Services

When all distribution elements are controlled end to end we talk about managed services. Typically this is the case of vertical integrated content distributors who 'own' also the (local) network (vertical integration).  Within their controlled network playout could be optimized by coordinating network and player states. In the situation that a content provider, with an end-to-end service over the open Internet, has a vertical integrated distribution partner a hybrid situations arises. A user accesses via open Internet the (OTT) service of the content provider and selects content. The DASH player could report its location (IP-address) and allow switching to other representations in the managed network.

10.9 Use Case 9: Operational Support of Live Service

The service provider offers a DASH-based live service. The service provider wants to understand how many clients are connected and also the behavior of each client and the quality of each client, especially if the quality is not sufficient for certain clients. Based on the feedback the service provider may add additional/remove CDN capabilities, may change the encoding configuration or changes other operational aspects. 

10.10 Use Case 10: Bi-Directional Hinting between Servers, Clients and the Network

Currently, DASH and DASH-like other streaming methods treat network as a “black box” and do not make use of feedback that could come from the network. Clients compete for bandwidth with each other as well as other non-streaming flows. Clients shift from one representation to another based on their own observations, and they only observe the network state indirectly. A client can change its behavior over time and start reacting differently than other clients albeit being in the same conditions. 

If several clients are competing for bandwidth, it is possible for them to be locked in a vicious circle of switching representations. This adversely affects quality of experience. An edge node may have a better knowledge of network conditions and a better estimate of how the conditions will change. Informing the clients of the expectation of network conditions could help avoid unnecessary representation switches.   

Intuitively, exchange of state information between the origin servers, caches, clients and the network should provide improvement. For example, when there is congestion, the network elements (such as routers) might be able to inform the servers/clients about the congestion. Another example is when a cache is having upstream congestion and also experiencing a high rate of cache misses due to downstream clients asking for different representations of a particular content, informing the clients about the content availability on the cache might be helpful. Yet, another example is when the information exchange can be used to deal with the oscillation problems that result from multi-client competitions. The competition might be among several clients from the same residence sharing an access link or a larger number of clients sharing an aggregation link. The information that can be conveyed from the servers or the network can complement the observations made by the clients.

Transport-level feedback collected from the servers, clients and certain network elements can be processed on the fly and used to provide specific guidance to the clients. A good example is Conviva, which analyzes real-time feedback information coming from several clients to understand the network/CDN state and then informs each client giving recommendations. One can potentially do better by adding the feedback coming from the network into the mix.

In case of a cache miss, there is a potential for a delay, as the cache will need to send a request to the origin. Providing a “heads-up” to the cache will allow it to prefetch a segment before it is needed.  This is especially important at representation switches, trick modes, and when the client decides to switch to a different CDN, since these cannot be anticipated by the cache.

10.11 Use Case 11: Monitoring, Diagnostics and Fault Isolation

What representation a specific content is delivered at, when it is delivered, to whom it is delivered and how it is delivered are important data for content and service providers as well as the advertisers. When something goes wrong in the distribution chain, one must be able to identify what went wrong. Reporting service-level metrics and transport and application-level performance metrics from clients is essential. Reporting which ads were seen is a key metric that allows content monetization. Currently, DASH supports a variety of metrics for this purpose. However, some certain metrics from the servers, caches as well as routers and edge boxes (to some extent) may also be useful. Processing reports coming from all these sources will help diagnose the problem(s) faster. 

It is probably unrealistic to expect reporting functionality on every element on the distribution path but critical points where more problems are likely to occur such as aggregation points should have this functionality. A separate plane (as we do not want to use the media delivery plane for this purpose) must be tasked of collecting, processing and running a detailed analytics on these reports.

10.12 Use Case 12: Inter-Device Media Synchronization

The following use cases would require IDMS (see this reference
 for a detailed description):

· SocialTV

· Online Quiz Shows

· E-learning

· Networked real-time multiplayer games

· Distributed tele-orchestra

· Conferencing services

· User-generated content sharing

Requirements:

· Session management: representation formats which enables to establish a session among participating clients for the purpose of exchanging media playout time and related timing information.

· Signaling of media playout time among clients: representation formats for media playout time and related timing information.

Note that the detection of the asynchronism and the actual synchronization of the media playout (i.e., adaptive media playout) remain informative and subject to competition.

10.13 Use Case 13: Next Segment Signaling

CDNs can optimize the delivery of DASH resources by pre-caching segments and subsegments into the cache. However, if each segment is named and treated independently, the dependency is not recognized by the network and prefetching from the origin is not possible. 

This is issue is specifically relevant in the case of using segmented Representations in an On-Demand case. In case a single Representation is used, the use of byte ranges provides sufficient indication for the CDN to prefetch additional data. 

One way to accelerate delivery of segmented content over a CDN is to have the edge server pre-fetch the next segment from origin at the same time as it retrieves the current segment. This means that the segment is ready and waiting when the next request arrives from the client. 

Since the edge server serving the media segment is not necessarily the same server which served the MPD, it has no visibility in to what the next segment might be. Additionally, it is stateless, and retains no knowledge of prior requests or related MPD requests. 

So far two alternatives have been proposed to achieve this goal.

10.14 Use Case 14: HTTP Custom Header in GET Requests

By following the suggested naming schemes for segments within the DASH264 specification and combining that with numerical addressing scheme, prefetching can be enabled, assuming the client is playing forward. However there are four problems with this approach: 

1. for time-based addressing schemas, there is no reliable way to know what the next request will look like, without requiring the edge server to parse the object. 

2. a stateless edge server cannot know whether the client is seeking forward or backwards no matter which addressing scheme it is using.  

3. if a player knows it is going to switch renditions, it cannot communicate this to the server so that the server prefetches the correct segment. 

4. range requests cannot be predicted by the server.

10.15 Use Case 15: HTTP HEAD Requests for CDN Heads-Up

Request routing can take a lot of time in CDNs. Especially in case of CDN interconnection there can be multiple DNS look-ups and HTTP redirects. Additional delay occurs in CDNs with dynamic content ingestion, which ingest a segment from an origin only when requested. In case of segmented content, the successive request routing - and cache-miss delays can seriously deteriorate the Quality of Experience for the viewer.

The DASH client uses HTTP HEAD messages to pre-resolve MDP entries a bit ahead of time. The consecutive HTTP HEAD messages get DNS resolved and HTTP redirected until the actual delivering CDN node is found. This way, no request-routing time is wasted when the actual segment is requested. Additionally, the CDN delivery node can interpret the HTTP HEAD message as a heads up, and already start ingesting the segment into its cache, speeding up the delivery process.

The solution includes MPEG DASH client and server behavior and timing with respect to HTTP HEAD messages. There may also be a capability exchange to indicate whether the server and/or client support the use of HTTP HEAD for this particular purpose. 

10.16 Use Case 16: MPD Fetch Triggering

This is used to signal up to which time the MPD can be used. In particular this message comprises a publishTime to uniquely identify the MPD and a relative timing information when the validity comes to an end. This could be useful in “warm start” situations. Whether emsg mechanism can be used for this purpose or not is TBD.

10.17 Use Case 17: Signaling Temporary/Permanent Representation Availability and Unavailability 

It might be desirable to signal DASH clients about the availability and unavailability of certain representations for a limited time or indefinitely. Whether this should be done by changing periods and the MPD or through a SAND channel is TBD. 

10.18 Use Case 18: Signaling Hinted Representations

The provider or the server would like to signal DASH clients about the preferred representations. 
11 [INFORMATIVE ANNEX] DASH Metrics
NOTE: Eventually, Annex D of Part 1 may be moved here.
� M. Montagud, F. Boronat, H. Stokking, R. Brandenburg, “Inter-destination multimedia synchronization: schemes, use cases and standardization”, Multimedia Systems, vol. 18, no. 6, pp. 459-482, 2012.

� ISO/IEC JTC1/SC29/WG11 MPEG2013/m30250, Emmanuel Thomas, Oskar van Deventer, Ray van Brandenburg, Rob Koenen, “Making DASH CDN friendly and CDNi DASH friendly”, August 2013, Vienna, Austria



�discussion to continue at MPEG 113 about which strategies (if any) should be normatively described in the specification.

�We keep both ResourceStatus and DaneResourceStatus at the moment. Clarification with 3GPP needed. 

�to be discussed more at MPEG#113. We already have 3 options described  in m36593 contribution.

�A first draft of XML schema will be brought to MPEG#113



Document type:   International Standard
Document subtype:    

Document stage:   (50) Approval
Document language:   E
C:\Users\champelm\Documents\Standards\MPEG-DASH\MPEG 112 - Warsaw\part 5\ISO-IEC_ProposedTextforDIS_23009-5_(E)_r1_redline.doc  STD Version 2.1c2

