3GPP TSG-SA4 meeting #85
S4-150972
Kobe, Japan, August 24-28, 2015

 Revision of S4-AHM278

Title:
MMCMH: Concurrent Codec Capabilities Exchange (CCCEx)
Source:
Qualcomm Incorporated
Document for:
Discussion and Decision
Introduction
Contribution [1] discussed the need to provide a means to exchange concurrent codec capabilities (CCC) among terminals performing in-terminal mixing where media is distributed without a focus, and instead, uses a multi-unicast topology (see section 6.4 of [3]). This contribution presents a format for providing the CCC information and a protocol for exchanging (CCCEx) the information among terminals.
Proposal

Update section 4.10 of [5] as follows:

------------------------------ Start of Changes -----------------------
4.10.1.2.6 Format of the Concurrent Codec Capabilities Information

4.10.1.2.6.1 Requirements for the Format
From the use cases and analysis provided in [1] the following requirements can be applied to the format of the CCC information:

1. Format indicates capabilities per codec
2. Format independently indicates capabilities for the encoder and decoder of each codec

3. Format can indicate whether concurrent operation of an encoder and/or decoder of different codecs share the same computational resource
4. Format can indicate that the terminal decoding capabilities do not pose a constraint because the terminal is able to trim the number of media streams to match its concurrent decoding capabilities.

4.10.1.2.6.2 Potential Solution(s)
Absolute Limits per Media Type
One simple solution is to communicate the maximum number of concurrent implementations of each media type. New session-level SDP parameters could be defined as follows:
a = max_dec_audio: num_instances

a = max_dec_video: num_instances

a = max_enc_audio: num_instances

a = max_enc_video: num_instances
Or, new media-level SDP parameters could be defined as follows:

a = max_dec: num_instances

a = max_enc: num_instances
This solution does not meet the requirements set in section 4.10.1.2.6.1. A limitation of this is that the maximum number of concurrent instances will be constrained by the most computationally-intensive codec. A severe, but possible, example of this is for a video telephony session where the terminal supports H.265 and declares that it can support up to two video encoder instances (H.264 and H.265, two H.264, or two H.265 instances). Knowing that it has to reserve enough resources for two video encoders, the terminal will be severely limited in the number of video decoder instances or speech encoder or decoder instances that it can handle concurrently.

This can cause the following:
· Prevent the terminal from being included in conferences with a larger number of participants using a less complex decoder

· Prevent all the participants in a conference from using more advanced optional codecs in the session
Absolute Limits per Codec Type
A more refined solution is to communicate the maximum number of concurrent implementations of each type of codec by defining the following SDP parameters:
a = max_dec: payload_type num_instances
a = max_enc: payload_type num_instances
This solution also does not meet requirements 1 and 2 set in section 4.10.1.2.6.1. A limitation of this is that it is not clear how the conference initiator can determine exactly how many concurrent encoders and decoders can be supported when there is a mix of codec types. A conservative way to estimate this is to use the encoder/decoder limit of the most computationally taxing codec being used. However this has the limitation that the limits are constrained by the most complex codec, resulting in the same disadvantages, namely,
· Prevent the terminal from being included in conferences with a larger number of participants using a less complex decoder

· Prevent all the participants in a conference from using more advanced optional codecs in the session

Processor Resource Allocation
One solution that meets the requirements in section 4.10.1.2.6.1 is to describe the percentage of processor resources available or allocated for each encoding/decoding function. This allows the call initiator to mix and match codecs, including those of different media types, along with their encoders and decoders as long as it keeps the total complexity load no larger than 100% of the allocated resources in a given processor. The information can be conceptualized as follows:
	Media Type
	Codec Name
	Resource allocation factor for encoder
	Resource allocation factor for decoder
	Processor number

	Audio
	AMR-NB
	0.1
	0.02
	1

	Audio
	AMR-WB
	0.2
	0.04
	1

	Audio
	EVS
	0.5
	0.1
	2

	Video
	AVC/H.264
	0.6
	0.15
	1

	Video
	HEVC/H.265
	0.9
	0.23
	2

Section 4.10.1.2.4 describes how a receiving terminal can prioritize and ignore particular media streams to reduce the number decoder instances it has to concurrently operate. If a terminal employs such a “trimming” algorithm and is able to limit the number of streams it has to decode to match its concurrent decoding capabilities, then the terminal does not require the conference initiator to limit the number of participants in the call based on the terminal’s decoding capabilities. In this case the terminal can indicate a processor resource allocation factor of 0 corresponding to such streams as illustrated in the following example:

	Media Type
	Codec Name
	Resource allocation factor for encoder
	Resource allocation factor for decoder
	Processor #

	Audio
	AMR-NB
	0.1
	0
	1

	Audio
	AMR-WB
	0.2
	0
	1

	Audio
	EVS
	0.5
	0
	2

	Video
	AVC/H.264
	0.6
	0.15
	1

	Video
	HEVC/H.265
	0.9
	0.23
	2

A simple way to describe the above information is to introduce two new codec-level SDP attributes:
a = enc_use: alloc_factor, proc_num
a = dec_use: alloc_factor, proc_num
where “alloc_factor” ranges from 0 to 1.0 and describes the resource allocation factor of processor “proc_num” that is available for the encoding/decoding function.
The conference initiator uses the above information from each participant to ensure that the proposed conference does not exceed either the concurrent codec capabilities of the participants.

Listing Codec Concurrent Codec Combination Profiles
Another solution that meets the requirements of section 4.10.1.2.6.1 is to list all the combinations of codec operations that the terminal can process simultaneously. This has the advantage that it does not require communicating the processor loading consumed by each codec function. The table below gives a non-exhaustive list of supported profiles based on the processor loading factors described in the previous section. The load factor is not to be communicated but is listed in the table to illustrate how supportable combinations are determined in the rest of the table.
One disadvantage is that there can be many codec combinations, increasing exponentially as the number of codecs supported increases. This can increase the message size, e.g. SDP/SIP, significantly
.

	Profile
	Encoders
	Decoders

	
	Video
	Audio
	Video
	Audio

	
	H.265
	H.264
	EVS
	AMR-WB
	AMR-NB
	H.265
	H.264
	EVS
	AMR-WB
	AMR-NB

	Load Factor
	0.8
	0.6
	0.5
	0.2
	0.08
	0.2
	0.15
	0.1
	0.04
	0.02

	A
	1
	
	
	1
	1
	1
	4
	
	1
	4

	B
	1
	
	
	1
	1
	1
	4
	
	2
	2

	C
	1
	
	
	1
	1
	1
	4
	
	3
	

	D
	1
	
	
	1
	1
	1
	1
	
	10
	8

	E
	
	1
	1
	
	1
	1
	1
	3
	2
	4

	F
	
	
	1
	1
	1
	
	
	5
	12
	12

	G
	
	1
	1
	
	1
	
	2
	5
	
	1

	H
	
	1
	1
	
	1
	1
	2
	3
	
	1

	I
	
	1
	1
	
	1
	1
	1
	3
	2
	4

	…
	
	
	
	
	
	
	
	
	
	

Profiles of Supported Concurrent Codec Combinations

Note that the profiles listed do not apply well to use cases that require simulcast of video using the same codec (i.e., low and high resolution images) as only one encoder is supported at a time. This is a limitation of the processor loading and not the profile scheme itself.

Profiles A through D can be thought of as the “HD Video” profiles that use H.265 at the expense of not allowing use of EVS. Although profiles A through C can handle the decoding of four H.264 streams, they cannot be used in typical multi-unicast video conferences as they can only encode one video stream and not in the mandatory codec such as H.264. An exceptional case could be where the user of this terminal wishes to only send video to one of the other participants, e.g, a video side bar conversation used for communicating sign language in an otherwise audio-only conference.

Aside from simple 2-party video sessions, profiles A through D are applicable to multicasting, single-source multicasting, or single-source multi-unicasting conferences where the H.265 codec is known to be supported by all terminals and simultaneous encoding of H.264 is not required. Note that Profile C may be considered invalid if AMR-NB is a mandatory codec for the service being offered as AMR-NB decoding is not supported. So this profile could be omitted for services mandating AMR-NB.
Profile F can be thought of as the “HD Voice only” profile, to be used in speech-only conferences. Since use cases requiring simultaneous encoding of speech using the same encoder are yet to be identified, the speech-only profiles only need to consider concurrently operating one instance of each speech encoder. This can simplify the number of profiles that need to be listed for speech-only conferences and profile F appears to be the only relevant speech-only profile as conferences supporting more than 13 participants are unlikely and may very well exceed the RTP stream processing limits of the terminal (described further below).

For terminals that perform trimming of received media streams without requiring decoding all of them, the number of instances of the decoder function can be indicated as “infinity” as follows:

	Profile
	Encoders
	Decoders

	
	Video
	Audio
	Video
	Audio

	
	H.265
	H.264
	EVS
	AMR-WB
	AMR-NB
	H.265
	H.264
	EVS
	AMR-WB
	AMR-NB

	Load Factor
	0.8
	0.6
	0.5
	0.2
	0.08
	0.2
	0.15
	0.1
	0.04
	0.02

	A
	1
	
	
	1
	1
	1
	4
	
	1
	Inf

	B
	1
	
	
	1
	1
	1
	4
	
	2
	2

	C
	1
	
	
	1
	1
	1
	4
	
	Inf
	0

	D
	1
	
	
	1
	1
	1
	1
	
	Inf
	Inf

	E
	
	1
	1
	
	1
	1
	1
	Inf
	2
	Inf

	F
	
	
	1
	1
	1
	
	
	Inf
	Inf
	Inf

	G
	
	1
	1
	
	1
	
	2
	Inf
	
	1

	H
	
	1
	1
	
	1
	1
	2
	Inf
	
	1

	I
	
	1
	1
	
	1
	1
	1
	Inf
	2
	Inf

	…
	
	
	
	
	
	
	
	
	
	

The above table is for a terminal that can trim down to three streams of received audio media.
RTP Stream Limits
The ability to support the concurrent decoding of many media streams makes it likely that decoding may not be the limiting factor in setting the size of a conference. The number of RTP media streams that can be handled by the terminal’s protocol stack becomes the limiting factor. Therefore it is important to also communicate this information about the RTP stack limitations to the conference initiator.

For this, two new session-level SDP attributes can be defined to specify the limits on the number of concurrent RTP stacks:
a = rtp_tx_limit: rtp_instances
a = rtp_rx_limit: rtp_instances

where “rtp_instances” indicates the number of concurrent RTP instances supported.

Editor’s note: Consider inserting ABNF of parameters here
4.10.1.2.7 Protocol for Concurrent Codec Capabilities Exchange (CCCEx)

4.10.1.2.7.1 Requirements for the CCCEx

From the use cases and analysis provided in [1] the following requirements can be applied to the CCCEx protocol:

1. Can exchange CCC before a call is ever initiated, e.g.,

a. when users enter each other’s contact information into a directory on the terminal

b. when user the codec capabilities of a terminal change (via download or swapping of terminal hardware)

2. Can exchange CCC at call set-up, if needed.
4.10.1.2.7.2 Potential Solution(s)
SIP OPTIONS method
As specified in section of 4.2.3 of [2], the OPTIONS can be used to query the capabilities of another client/user agent by asking the agent to send a copy of the SDP it would offer describing its capabilities. This SDP will contain the CCC information as described in the previous section.
The OPTIONS request can be made well in-advance of a conference call and the SDP response be stored in a profile for the queried terminal. Or, immediately before setting up a conference, the conference initiator could query the capabilities of all the terminals it plans to invite for which it does not have the information pre-stored.

------------------------------ End of Changes -----------------------
References
[1] S4-150720 MMCMH: Concurrent Codec Capabilities for Conferences with In-terminal Mixing
[2] RFC 3261, “SIP: Session Initiation Protocol”, June 2002, https://www.ietf.org/rfc/rfc3261.txt
[3] RFC 4353, “A Framework for Conferencing with the Session Initiation Protocol (SIP)”, February 2006, http://www.rfc-editor.org/rfc/rfc4353.txt
[4] RFC 3515, “The Session Initiation Protocol (SIP) Refer Method”, April 2003, https://www.ietf.org/rfc/rfc3515.txt
[5] S4-150822 MMCMH Permanent Document v0.3.0[image: image1.png]
�Some reduction in signalling can be made by applying additional rules such as listing the codec functions in order of decreasing complexity, then understanding that if the number of instances of a codec function of a higher complexity is reduced by one, an instance of one of the less complex codec functions on the same processor can be increased by at least one. While this may give a less-than-optimal limit when the codec process whose number of instances is reduced is more complex than the others codec processes, it would allow omitting a number of profiles.

Page: 1/6

Page: 5/6

