3GPP TSG SA4#84 meeting
S4-150699
06 - 10 July, 2015, Rennes, France

Agenda item:
7
Source:
Qualcomm Incorporated
Title:
eDASH: Server-based Ad Insertion based on DASH-IF
Document for
Agreement

1 Introduction
During SA4#82 3GPP SA4 agreed on the DASH-IF ad insertion technologies as the baseline for ad insertion in 3GPP DASH. During this meeting 3GPP SA4 received an LS from DASH-IF in S4-150434 providing the DASH-IF Interoperability Points for version 3.0 In S4-150418, the IOPs and features and their relation is presented. The DASH-IF IOP simple profile covers a large portion of the use cases and objectives covered in the eDASH WID and also addresses the issue of industry alignment.
For ad insertion, it is proposed to

· provide additional clarifications on server-based ad insertion in TS26.247

· add additions on segment availability and period labelling
· Additional constraints and guidelines for ad insertion
2 Text Overview for Ad Insertion
Introduction

2.1.1 General

This section provides recommendations for implementing ad insertion in DASH. Specifically, it defines the reference architecture and interoperability points for a DASH-based ad insertion solution.

2.1.2 DASH Concepts

DASH ad insertion relies on several DASH tools defined in ISO/IEC 23009-1:2014/Amd.1:2015, which are introduced in this section. The correspondence between these tools and ad insertion concepts are explained below.
2.1.2.1 Remote Elements

Remote elements are elements that are not fully contained in the MPD document but are referenced in the MPD with an HTTP-URL using a simplified profile of XLink.

A remote element has two attributes, @xlink:href and @xlink:actuate. @xlink:href contains the URL for the complete element, while @xlink:actuate specifies the resolution model. The value "onLoad" requires immediate resolution at MPD parse time, while "onRequest" allows deferred resolution at a time when an XML parser accesses the remote element. In this text we assume deferred resolution of remote elements, unless explicitly stated otherwise. While there is no explicit timing model for earliest time when deferred resolution can occur, the specification strongly suggests it should be close to the expected playout time of the corresponding Period. A reasonable approach is to choose the resolution at the nominal download time of the Segment.

[image: image1.emf]HTTP GET(@xlink:href)Success?Valid period?NoNoReplace elementYesPeriod presentedYesPeriod ignored

Figure 1: XLink resolution
Resolution (a.k.a. dereferencing) consists of two steps. Firstly, a DASH client issues an HTTP GET request to the URL contained in the @xlink:href, attribute of the in-MPD element, and the XLink resolver responds with a remote element entity in the response content. In case of error response or syntactically invalid remote element entity, the @xlink:href and @xlink:actuate attributes the client shall remove the in-MPD element.

If the value of the @xlink:href attribute is urn:mpeg:dash:resolve-to-zero:2013, HTTP GET request is not issued, and the in-MPD element shall be removed from the MPD. This special case is used when a remote element can be accessed (and resolved) only once during the time at which a given version of MPD is valid.
If a syntactically valid remote element entity was received, the DASH client will replace in-MPD element with remote period entity.
Once a remote element entity is resolved into a fully specified element, it may contain an @xlink:href attribute, which contains a new XLink URL allowing repeated resolution.

Note that the only information passed from the DASH client to the XLink resolver is encoded within the URL. Hence there may be a need to incorporate parameters into it, such as splice time (i.e., PeriodStart for the remote period) or cue message.

2.1.2.2 Periods

2.1.2.2.1 Timing

Periods are time-delimited parts of a DASH Media Presentation. The value of PeriodStart can be explicitly stated using the Period@start attribute or indirectly computed using Period@duration of the previous Periods.
Precise period duration of period i is given by PeriodStart(i+1) – PeriodStart(i). This can accommodate the case where media duration of period i is slightly longer than the period itself, in which case a client will schedule the start of media presentation for period i+1 at time PeriodStart(i+1).

Representation@presentationTimeOffset specifies the value of the presentation time at PeriodStart(i) .

2.1.2.2.2 Segment Availability

In case of dynamic MPDs, Period-level BaseURL@availabilityTimeOffset allow earlier availability start times. A shorthand notation @availabilityTimeOffset="INF" at a Period-level BaseURL indicates that the segments within this period are available at least as long as the current MPD is valid. This is the case with stored ad content. Note that DASH also allows specification of @availabilityTimeOffset at Adaptation Set and Representation level.

2.1.2.2.3 Seamless transition

The DASH specification says nothing about Period transitions – i.e., there are no guarantees for seamless continuation of playout across the period boundaries. Content conditioning and receiver capability requirements should be defined for applications relying on this functionality. However, Period continuity may be used and signaled using the tools defined in ISO/IEC 23009-1:2014/Amd.3 [5].

2.1.2.2.4 Period labeling

Period-level AssetIdentifier descriptors identify the asset to which a given Period belongs. Beyond identification, this can be used for implementation of client functionality that depends on distinguishing between ads and main content (e.g. progress bar and random access).

2.1.2.3 MPD Updates

If MPD@minimumUpdatePeriod is present, the MPD can be periodically updated. These updates can be synchronous, in which case their frequency is limited by MPD@minimumUpdatePeriod. In case of the main live profiles MPD updates may be triggered by DASH events. Fir details refer to section 4.5.

When new period containing stored ads is inserted into a linear program, and there is a need to unexpectedly alter this period the inserted media will not carry the `emsg` boxes – these will need to be inserted on-the-fly by proxies. In this case use of synchronous MPD updates may prove simpler.
MPD@publishTime provides versioning functionality: MPD with later publication times include all information that was included all MPDs with earlier publication times.
2.1.2.4 Session information

In order to allow fine-grain targeting and personalization, the identity of the client/viewer, should be known i.e. maintain a notion of a session.

HTTP is a stateless protocol, however state can be preserved by the client and communicated to the server.

The simplest way of achieving this is use of cookies. According to RFC 6265 [37], cookies set via 2xx, 4xx, and 5xx responses must be processed and have explicit timing and security model.

2.1.2.5 Tracking and reporting

The simplest tracking mechanism is server-side logging of HTTP GET requests. Knowing request times and correspondence of segment names to content constitutes an indication that a certain part of the content was requested. If MPDs (or remote element entities) are generated on the fly and identity of the requester is known, it is possible to provide more precise logging. Unfortunately this is a non-trivial operation, as same user may be requesting parts of content from different CDN nodes (or even different CDNs), hence log aggregation and processing will be needed.

2.2 Server-based Architecture

2.2.1 Introduction

[image: image2.emf]Cloud

Ad Decision Server

ad

ad

ad

content

content

content

Media Engine

DASH

Access Client

Ad Decision Server

MPD GeneratorPackager

CDN/Origin

Content

+ inband events

ad

ad

ad

content

content

content

Segments

Segments

and timing

XLink

Resolver

Content + cues

Cues

Periods

XLink

MPD

Figure 2: Server-based architecture
In the server-based model, all ad-related information is expressed via MPD and segments, and ad decisions are triggered by client requests for MPDs and for resources described in them (Segments, remote periods).

The server-based model is inherently MPD-centric – all data needed to trigger ad decision is concentrated in the MPD. In case where ad break location (i.e., its start time) is unknown at the MPD generation time, it is necessary to rely on MPD update functionality. The two possible ways of achieving these are described in 5.1.2.4.

In the live case, packager receives feed containing inband cues, such as MPEG-2 TS with SCTE 35 cue messages [50]. The packager ingests content segments into the CDN, passing manifest and cue data to the ad management module. In the on demand case, cues can be provided out of band.

Ad management is located at the server side (i.e., in the cloud), thus all manifest and content conditioning is done at the server side.

2.2.2 Mapping to DASH

2.2.2.1 Period elements

2.2.2.1.1 General
A single ad is expressed as a single Period element.

Periods with content that is expected to be interrupted as a result of ad insertion should contain explicit start times (Period@start), rather than durations. This allows insertion of new periods without modifying the existing periods. If a period has media duration longer then the distance between the start of this period and the start of next period, use of start times implies that a client will start the playout of the next period at the time stated in the MPD, rather than after finishing the playout of the last segment.

An upcoming ad break is expressed as Period element(s), possibly remote.

2.2.2.1.2 Remote Period elements.

Remote Periods are resolved on demand into one or more than one Period elements. It is possible to embed parameters from the cue message into the XLink URL of the corresponding remote period, in order to have them passed to the ad decision system via XLink resolver at resolution time.

In an elastic workflow, when an ad break is not taken, the remote period will be resolved into a period with zero duration. This period element will contain no adaptation sets.

If a just-in-time remote Period dereferencing is required by use of @xlink:actuate="onRequest", MPD update containing a remote period should be triggered close enough to the intended splice time. This can be achieved using MPD Validity events and full-fledged MPD update, or using MPD Patch and MPD Update events (see sec. 5.1.2.4 and 5.1.2.3). However, due to security reasons MPD Patch and MPD Update events should only be used with great care.

In case of Period@xlink:actuate="onRequest", MPD update and XLink resolution should be done sufficiently early to ensure that there are no artefacts due to insufficient time given to download the inserted content. Care needs to be taken so that the client is given a sufficient amount of time to (a) request and receive MPD update, and (b) dereference the upcoming remote period.
[image: image3.png]
Figure 9: Using an asset identifier
NOTE: It may be operationally simpler to avoid use of Period@xlink:actuate="onRequest", dereferencing in case of live content.

2.2.2.2 Asset Identifiers
AssetIdentifier descriptors identify the asset to which a Period belongs. This can be used for implementation of client functionality that depends on distinguishing between ads and main content (e.g. progress bar).

Periods with same AssetIdentifier should have identical Adaptation Sets, Initialization Segments and same DRM information (i.e., DRM systems, licenses). This allows reuse of at least some initialization data across periods of the same asset, and ensures seamless continuation of playback if inserted periods have zero duration. Period continuity may be signaled.

2.2.2.3 MPD updates

MPD updates are used to implement dynamic behavior. An updated MPD may have additional (possibly – remote) periods. Hence, MPD update should be triggered by the arrival of the first cue message for an upcoming ad break. Ad breaks can also be canceled prior to their start, and such cancellation will also trigger an MPD update.

Frequent regular MPD updates are sufficient for implementing dynamic ad insertion. Unfortunately they create an overhead of unnecessary MPD traffic – ad breaks are rare events, while MPD updates need to be frequent enough if a cue message is expected to arrive only several seconds before the splice point. Use of HTTP conditional GET requests (i.e., allowing the server to respond with "304 Not Modified" if MPD is unchanged) is helpful in reducing this overhead, but asynchronous MPD updates avoid this overhead entirely.
DASH events with scheme "urn:mpeg:dash:event:2013" are used to trigger asynchronous MPD updates.

The simple mapping of live inband cues in live content into DASH events is translating a single cue into an MPD Validity expiration event (which will cause an MPD update prior to the splice time). MPD Validity expiration events need to be sent early enough to allow the client request a new MPD, resolve XLink (which may entail communication between the resolver and ADS), and, finally, download the first segment of the upcoming ad in time to prevent disruption of service at the splice point.

If several `emsg` boxes are present in a segment and one of them is the MPD Validity Expiration event, `emsg` carrying it shall always appear first.

2.2.2.4 MPD events

In addition to tracking events (ad starts, quartile tracking, etc.) the server may also need to signal additional metadata to the video application. For example, an ad unit may contain not only inline linear ad content (that is to be played before, during, or after the main presentation), it may also contain a companion display ad that is to be shown at the same time as the video ad. It is important that the server be able to signal both the presence of the companion ad and the additional tracking and click-through metadata associated with the companion.
With that said, there is no need to have a generic DASH client implement this functionality – it is enough to provide opaque information that the client would pass to an external module. Event @schemeIdUri provides us with such addressing functionality, while MPD events allow us to put opaque payloads into the MPD.

2.2.3 Workflows

In the workflows below we assume that our inputs are MPEG-2 transport streams with embedded SCTE 35 cue messages [50]. In our opinion this will be a frequently encountered deployment, however any other in-band or out-of-band method of getting cue messages and any other input format lend themselves into the same model.

2.2.3.1 Linear

A real-time MPEG-2 TS feed arrives at both packager and MPD generator. While real-time multicast feeds are a very frequently encountered case, the same workflow can apply to cases such as ad replacement in a pre-recorded content (e.g., in time-shifting or PVR scenarios).

MPD generator generates dynamic MPDs. Packager creates DASH segments out of the arriving feed and writes them into the origin server. Client periodically requests the MPDs so that it has enough time to transition seamlessly into the ad period.

Packager and MPD generator may be tightly coupled (e.g. co-located on the same physical machine), or loosely coupled as they both are synchronized only to the clock of the feed.

[image: image4.emf]Buffer packets and

create segments

Buffer had SCTE 35?

Prepend MPD

Validity Expiration

event to segment

Write to originno

yes

TS packet is new

SCTE 35?

Discard packet

Update MPD with

new remote period

yes

no

MPEG-2 TS

MPEG-2 TS

M

P

E

G

-

2

T

S

M

P

E

G

-

2

T

S

Figure 4: Live Workflow

2.2.3.1.1 Cue Interpretation by the MPD generator

When an SCTE 35 cue message indicating an upcoming splice point is encountered by the MPD generator, the latter creates a new MPD for the same program, adding a remote period to it.

The Period@start attribute of the inserted period has splice_time() translated into the presentation timeline. Parameters derived from the cue message are inserted into the Period@xlink:href attribute of the inserted period. Examples below show architectures that allow finer targeting.

2.2.3.1.1.1 Example 1: Immediate ad decision

MPD generator keeps an up-to-date template of an MPD. At each cue message arrival, the generator updates its template. At each MPD request, the generator customizes the request based on the information known to it about the requesting client. The generator contacts ad decision server and produces one or more non-remote ad periods. In this case XLink is not needed.
2.2.3.1.1.2 Example 2: Stateful cue translation
MPD generator keeps an up-to-date template of an MPD. At each cue message arrival, the generator updates its template. At each MPD request, the generator customizes the request based on the information known to it about the requesting client.

The operator targets separately male and female audiences. Hence, the generator derives this from the information it has regarding the requesting client (see 5.1.2.5), and inserts an XLink URL with the query parameter ?gender=male for male viewers, and ?gender=female for the female viewers.

Note that this example also showcases poor privacy practices – would such approach be implemented, both parameter name and value should be encrypted or TLS-based communication should be used

2.2.3.1.1.3 Example 3: Stateless cue translation

At cue message arrival, the MPD generator extracts the entire SCTE 35 splice_info_section (starting at the table_id and ending with the CRC_32) into a buffer. The buffer is then encoded into URL-safe base64url format according to RFC 4648 [56], and inserted into the XLink URL of a new remote Period element. splice_time is translated into Period@start attribute. The new MPD is pushed to the origin.

Note: this example is a straightforward port of the technique defined for SCTE 67 [51], but uses base64url and not base64 encoding as the section is included in a URI.

2.2.3.1.2 Cue Interpretation by the packager

Cue interpretation by the packager is optional and is an optimization, rather than core functionality.

On reception of an SCTE 35 cue message signaling an upcoming splice, an `emsg` with MPD Validity Expiration event is inserted into the first available segment. This event triggers an MPD update, and not an ad decision, hence the sum of the earliest presentation time of the `emsg`-bearing segment and the `emsg`.presentation_time_delta should be sufficiently earlier than the splice time. This provides the client with sufficient time to both fetch the MPD and resolve XLink.

splice_time() of the cue message is translated into the media timeline, and last segment before the splice point is identified. If needed, the packager can also finish the segment at the splice point and thus having a segment shorter than its target duration.

2.2.3.1.3 Multiple cue messages

There is a practice of sending several SCTE 35 cue messages for the same splice point (e.g., the first message announces a splice in 6 seconds, the second arrives 2 seconds later and warns about the same splice in 4 seconds, etc.). Both the packager and the MPD generator react on the same first message (the 6-sec warning in the example above), and do nothing about the following messages.

2.2.3.1.4 Cancelation

It is possible that the upcoming (and announced) insertion will be canceled (e.g., ad break needed to be postponed due to overtime). Cancelation is announced in a SCTE 35 cue message.

When cancelation is announced, the packager will insert the corresponding `emsg` event and the MPD generator will create a newer version of the MPD that does not contain the inserted period or sets its duration to zero. This implementation maintains a simpler less-coupled server side system at the price of an increase in traffic.

2.2.3.1.5 Early termination

It is also possible that a planned ad break will need to be cut short – e.g., an ad will be cut short and there will be a switch to breaking news. The DASH translation of this would be creating an `emsg` at the packager and updating the MPD appropriately. Treatment of early termination here would be same as treatment of a switch from main content to an ad break.

It is easier to manipulate durations when Period@duration is absent and only Period@start is used – this way attributes already known to the DASH client don’t change.

2.2.3.1.6 Informational cue messages

SCTE 35 can be used for purposes unrelated to signaling of placement opportunities. Examples of such use are content identification and time-of-day signaling. Triggering MPD validity expiration and possibly XLink resolution in this case may be an overreaction.
2.2.3.1.7 Ad decision

[image: image5.emf]Dash ClientMPD GeneratorXLink Resolver

MPD

GET(MPD)

GET(XLink URL)

Ad Decision Server

RequestAd(avail)

Ad Decision

CDN node

Ad Period (Entity)

Ad Segment

GET(Ad Segment)

Figure 5: Ad Decision
A client will attempt to dereference a remote period element by issuing an HTTP GET for the URL that appears in Period@xlink:href. The HTTP server responding to this request (XLink resolver) will contact the ad decision service, possibly passing it parameters known from the request URL and from client information available to it from the connection context. In case described in 5.3.3.1.1.3, the XLink resolver has access to a complete SCTE 35 message that triggered the splice.

The ad decision service response identifies the content that needs to be presented, and given this information the XLink resolver can generate one or more Period elements that would be then returned to the requesting DASH client.

A possible optimization is that resolved periods are cached – e.g. in case of 5.3.3.1.1.1 "male" and "female" versions of the content are only generated once in T seconds, with HTTP caching used to expire the cached periods after T seconds.

2.2.3.2 On Demand

In a VoD scenario, cue locations are known ahead of time. They may be available multiplexed into the mezzanine file as SCTE 35 or SCTE 104, or may be provided via an out-of-band EDL.

In VoD workflows both cue locations and break durations are known, hence there is no need for a dynamic MPD. Thus cue interpretation (which is same as in 5.3.3.1) can occur only once and result in a static MPD that contains all remote elements with all Period elements having Period@start attribute present in the MPD.

In elastic workflows ad durations are unknown, thus despite our knowledge of cue locations within the main content it is impossible to build a complete presentation timeline. Period@duration needs to be used. Remote periods should be dereferenced only when needed for playout. In case of a “jump” – random access into an arbitrary point in the asset – it is a better practice not to dereference Period elements when it is possible to determine the period from which the playout starts using Period@duration and asset identifiers. The functionality described in 5.3.3.1 is sufficient to address on-demand cases, with the only difference that a client should be able to handle zero-duration periods that are a result of avails that are not taken.

2.2.3.3 Capture to VoD

Capture to VoD use case is a hybrid between pure linear and on demand scenarios: linear content is recorded as it is broadcast, and is then accessible on demand. A typical requirement is to have the content available with the original ad for some time, after which ads can be replaced

There are two possible ways of implementing the capture-to-VoD workflow.

The simplest is treating capture-to-VoD content as plain VoD, and having the replacement policy implemented on the XLink resolver side. This way the same Period element(s) will be always returned to the same requester within the window where ad replacement is disallowed; while after this window the behavior will be same as for any on-demand content. An alternative implementation is described in 5.3.3.4 below.

2.2.3.4 Slates and ad replacement

A content provider (e.g., OTT) provides content with ad breaks filled with its own ads. An ISP is allowed to replace some of these with their own ads. Conceptually there is content with slates in place of ads, but all slates can be shown and only some can be replaced.

An ad break with a slate can be implemented as a valid in-MPD Period element that also has XLink attributes. If a slate is replaceable, XLink resolution will result in new Period element(s), if not – the slate is played out.

2.2.3.5 Blackouts and Alternative content

In many cases broadcast content cannot be shown to a part of the audience due to contractual limitations (e.g., viewers located close to an MLB game will not be allowed to watch it, and will be shown some alternative content). While unrelated to ad insertion per se, this use case can be solved using the same “default content” approach, where the in-MPD content is the game and the alternative content will be returned by the XLink resolver if the latter determines (in some unspecified way) that the requester is in the blackout zone.

2.2.4 Examples

2.2.4.1 MPD with mid-roll ad breaks and default content

In this example, a movie (“Top Gun”) is shown on a linear channel and has two mid-roll ad breaks. Both breaks have default content that will be played if the XLink resolver chooses not to return new Period element(s) or fails.
In case of the first ad break, SCTE 35 cue message is passed completely to the XLink resolver, together with the corresponding presentation time.
In case of the second ad break, proprietary parameters u and z describe the main content and the publishing site.
	<?xml version="1.0"?>
<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:dash:schema:mpd:2011"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
 type="dynamic"
 minimumUpdatePeriod="PT2S"
 timeShiftBufferDepth="PT600S"
 minBufferTime="PT2S"
 profiles="urn:mpeg:dash:profile:isoff-live:2011"
 availabilityStartTime="2012-12-25T15:17:50">
 <BaseURL>http://cdn1.example.com/</BaseURL>
 <BaseURL>http://cdn2.example.com/</BaseURL>

 <!-- Movie -->
 <Period start="PT0.00S" duration="PT600.6S" id="movie period #1">
 <AssetIdentifier schemeIdUri="urn:org:dashif:asset-id:2013"
 value="md:cid:EIDR:10.5240%2f0EFB-02CD-126E-8092-1E49-W">
 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"

 frameRate="24000/1001" segmentAlignment="true" startWithSAP="1">
 <BaseURL>video_1/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
 media="$Bandwidth$/$Number%05d$.mp4v"/>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 </Period>

 <!-- Mid-roll advertisement, passing base64url-coded SCTE 35 to XLink resolver -->
 <Period duration="PT60.6S" id="ad break #1"

 xlink:href="https://adserv.com/avail.mpd?time=54054000&id=1234567&

 cue=DAIAAAAAAAAAAAQAAZ_I0VniQAQAgBDVUVJQAAAAH+cAAAAAA=="

 xlink:actuate="onRequest" >

 <!-- Default content, replaced by elements from remote entity -->
 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"

 frameRate="30000/1001"
 segmentAlignment="true" startWithSAP="1">
 <BaseURL availabilityTimeOffset="INF">default_ad/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
 media="$Bandwidth%/$Time$.mp4v"/>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 </Period>

 <!—Movie, cont'd -->
 <Period duration="PT600.6S" id="movie period #2">
 <AssetIdentifier schemeIdUri="urn:org:dashif:asset-id:2013"
 value="md:cid:EIDR:10.5240%2f0EFB-02CD-126E-8092-1E49-W">
 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"

 frameRate="24000/1001"
 segmentAlignment="true" startWithSAP="1">
 <BaseURL>video_2/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
 media="$Bandwidth%/$Time$.mp4v"/>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 </Period>

 <!-- Mid-roll advertisement, using proprietary parameters -->
 <Period start="PT60.6S" id="ad break #2"
 xlink:href=”https://adserv.com/avail.mpd?u=0EFB-02CD-126E-8092-1E49-W&z=spam”

 xlink:actuate="onRequest" >

 <!-- Default content, replaced by elements from remote entity -->
 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"

 frameRate="30000/1001"
 segmentAlignment="true" startWithSAP="1">
 <BaseURL availabilityTimeOffset="INF">default_ad2/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
 media="$Bandwidth%/$Time$.mp4v"/>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 </Period>
</MPD>

Figure 6: Example of MPD for "Top Gun" movie

3 Proposal
It is proposed to use the text in section 2 as the baseline for ad insertion addition. The integration to TS26.247 as a CR will be provided for the upcoming meeting.
- 1/14 -

_1490516256.vsd
�

 Cloud

Ad Decision Server

ad

ad

ad

content

content

content

MPD

Media Engine

DASH
Access Client

Ad Decision Server

MPD Generator

Packager

CDN/Origin

Content
+ inband events

ad

ad

ad

content

content

content

Segments

Segments
and timing

XLink Resolver

 Content + cues

Cues

Periods

XLink

_1490516257.vsd
�

�

�

_1490516258.vsd
Dash Client

MPD Generator

XLink Resolver

GET(MPD)

MPD

Ad Period (Entity)

GET(XLink URL)

Ad Decision Server

GET(Ad Segment)

RequestAd(avail)

Ad Decision

CDN node

Ad Segment

HTTP GET(@xlink:href)
Success?
Valid period?
No
No
Replace element
Yes
Period presented
Yes
Period ignored

