3GPP TSG SA WG3 (Security) Meeting #91Bis	S3-181274
16 Apr – 22 Apr 2018, Belgrade	

Source:	NCSC
Title:	Discussion of potential issues in JSON parsers
Document for:	Discussion
[bookmark: _GoBack]Agenda Item:	7.2.13.1
1	Decision/action requested
A discussion of how to address the security issues raised from implementation specific features in the JSON standards
2	References
[1] The JavaScript Object Notation (JSON) Data Interchange Format. https://tools.ietf.org/html/rfc8259
[2]	CVE-2017-12119 - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-12119
[3]	CVE-2016-4303 - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4303
[4]	CVE-2016-4425 - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4425
[5]	CVE-2017-12635 - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-12635
[6]	CVE-2017-12636 - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-12636
[7]	CVE-2016-1406 - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1406
[8]	CPP-Ethereum JSON-RPC Denial Of Service Vulnerabilities. https://www.talosintelligence.com/vulnerability_reports/TALOS-2017-0471
[9]	ESnet iPerf3 JSON parse_string UTF Code Execution Vulnerability. https://www.talosintelligence.com/reports/TALOS-2016-0164

3	Rationale
The JSON specification [1] leaves how to handle certain cases undefined, and have ambiguities in what conforms to the standard. This document highlights some of the potential security issues that might arise when NFs receive nominally valid JSON text, i.e. when two different software stacks have different deserializers which perform different actions on receiving the same input. We also give examples of vulnerabilities where some feature of the JSON standard increases the likelihood of an error (e.g. requirements on string or number handling) if the parser is written in a different language.
4	Details
4.1	Summary of JSON
There are multiple RFCs specifying JSON (list here). We note that JSON has no version numbers – that in itself raises some ambiguity, but we shall assume that [1] will be the standard that 3GPP writes against. A JSON text thus consists of a string, number, Boolean, null, array or object (value types). An array is an ordered sequence of values, and an object is an unordered sequence of name/value pairs. Objects and arrays can be nested, and the standard places on restriction on this, leaving it up to the implementation. New in [1] is the restriction that “non-closed systems” shall use UTF-8. Previous RFCs permitted UTF-8, -16 or -32, and these different encodings are valid for ‘closed’ systems.
4.2 	Objects – repeated names
The JSON standard asserts that the names within an object SHOULD be unique. How a parser handles an object with repeated names is implementation specific. Implementations may use the first name read, the last name or take some other action. This ambiguity can have serious consequences. CVE-2017-12635, [5], is a vulnerability in CouchDB which permits an arbitrary user to execute database commands with administrator privileges. In combination with CVE-2017-12636, [6], (Remote Code Execution) the user can obtain a shell with the same privileges as the database system user. The problem arises if a “role” name is present twice – different parsers are used for different parts of the CouchDB system, and they handle the cases differently, authorising a low-privilege user to run a command with higher privileges. Attacks using this vulnerability have been detected: the attacker installed a crypto-currency miner on servers connected to the internet.
CVE-2016-1406, [7], may be another instance of privilege escalation through JSON, however full details are not available.
If objects will be used in 3GPP signalling, then implementation specific handling of repeated names in this fashion by different NFs may result in NFs associating the signalling to different users, so that user A has service, but user B gets billed.

4.3	Arrays and objects – nesting
There is no defined limit to the depth of nesting of objects and arrays – instead implementations may set a maximum depth. CVE-2016-4425 gives a real-world example of exhausting the stack using (validly) crafted JSON in the jansson parser. No details are published, but the general description implies that it is possible to recursively call a function arbitrarily many times, thus an attacker can exhaust the stack.
If arrays/objects have no limit on nested size in 3GPP signalling, then there may be possible DoS vulnerabilities through (valid) JSON crashing the NF.
4.4 String and number handling issues
The latest RFC, as well as multiple CVEs for JSON related indicate other problems that may need to taken into consideration. A simple issue is string comparison (escaped characters) – no canonical form is specified, so two strings representing the same text may fail a string comparison test depending on how the comparison is performed.
As JSON is valid JavaScript, its integer range is impressive – maxInt for the Number class is 1.7976931348623157e+308. It also is agnostic about the number being an integer, non-integer real, or in scientific notation. This can cause issues when writing parsers in other languages. CVE-2017-12119, [2], highlights the difficulty in handling arbitrary numerical input when using a C++ deserializer. The researchers at Talos describe it in great detail, [8]. In summary the parser has an effective maxUint that is acutally maxInt, but in any case is relatively small (0x7fffffff) compared to JavaScript. Using a value such as 112233445566778899, perfectly valid as a JavaScript Number, for a numerical field will result in an uncaught exception being thrown by some isInt check which returns false, causing an abort to be called.
A more complicated vulnerability, CVE-2016-4303, [3],[9] highlights the issues with handling multiple encoding types. Summarising the Talos description: the attacker posts a message like this to the client:
 {"\uC":"DEEEEEEEEFFFFFFFFGGGGGGGG"}
The parser initially identifies the key \uC and its string-length as 3. The parser obtains a chunk of heap to write the key to accordingly. When copying the key to the allocated buffer, and dealing with escaped characters, the code assumes that the \u is followed be 4 hex-digits, so it increments the pointer by 4 and moves on to the next character, thus the next character it reads is the D. The copying proceeds until the next " is found, character by character. This overwrites past the end of the allocated space, corrupting the heap. Shortly after this, the allocated buffer is freed, and the corruption (in the proof-of-concept) results in a crash. It is possible that an attacker could turn this into remote code execution, though no exploits are reported and the bug is patched.

	
