3GPP TSG SA WG3 (Security) Meeting #85
S3-161794
7-11 November 2016 Santa Cruz de Tenerife (Spain)
revision of S3-13abcd
Source:
Huawei, Hisilicon,
Title:
A Client-Puzzle-Based Dos Attack Defense Approach for mIoT Infrequent Small Data Transmission
Document for:
Discussion & Approval
Agenda Item:
8.6.14
Work Item / Release:
FS_NSA/Rel-14
Abstract of the contribution: This contribution proposes a client-puzzle-based Dos attack defense approach for mIoT infrequent small data transmission.
pCR
***************************BEGIN OF CHANGES **********************
5.14.4.x
Solution #14.x: A Client-Puzzle-Based Dos Attack Defense Approach for mIoT Infrequent Small Data Transmission
5.14.4.x.1
Introduction

This solution addresses the key issue 5.14.3.3.
It is pointed out in the key issue that UEs may repeatedly access the small data interface and keep sending data hogging the resources and creating DOS attacks. The potential security requirement is “UEs accessing small data interface need to be restricted for their frequency of access as well as amount of data (packet size) send on the interface.”
5.14.4.x.2
Solution details
In the proposed solution, both the IoT device and the basestation (BS) are assumed to be pre-provisioned with IBS credentials.
The solution details are as follows:

0.
The BS generates multiple puzzles, i.e., Puzzle 1, Puzzle2, …, Puzzle N. Different puzzles have different difficulty, and have different corresponding data package size allowance.

1.
The BS broadcast BS information every t seconds. The broadcasted message should include BS’s identity (BS_ID), a timestamp (TS), an indicator (P_Ind) indicating whether solving puzzle is necessary for IoT devices before uploading their data, the Puzzles (Puzzle 1, Puzzle2, …, Puzzle N), and a signature (Sig_BS) generated for the message using its private key. A possible format of the message is (BS_ID, TS, P_Ind, Puzzles, Sig_BS) .

2. When the IoT device receives the message, it first verifies the signature of the BS. Then, it checks the indicator to make sure that whether solving puzzle is required before sending the data. If solving puzzle is required, it will compute the puzzle. Then, it generates a symmetric key based on its and the BS’s IBS identity, i.e., K=e(xH(Device_ID), H(BS_ID)).

3. The IoT device sends the small data packet together with the puzzle solution to the BS. The meassge is (Device_ID, TS, PZ#, PS, En(SDS-PDU, K), MAC), where Device_ID is the IoT device’s ID, TS is the timestamp received in step 1 (the puzzle’s timestamp), PZ# denotes the number of the puzzle, PS denotes the solution of the corresponding puzzle (PZ#), En(SDS-PDU, K) is the small data packet encrypted by K, MAC is a message authentication code generated for the message using K.

4. Upon receiving the message, the BS first checks the time difference between the current time and the puzzle’s time stamp. If the time difference is larger than a threshold, it will drop the packet. Otherwise, it checks the PZ#, and makes the size of the small data packet is within the puzzle’s corresponding data size allowance. Then, it verifies the puzzle solution. If the verification is correct, it then generats a symmetric key based on its and the IoT device’s IBS identity, i.e., K=e(xH(BS_ID), H(Device_ID)). Then, it verifies the MAC using the K and decrpys the data packet using K.

5. The BS sends the decrypted data packet (SD-PDU) to the Serving SDHF.

6. The Serving SDHF sends the SD-PDU to the Gateway SDHF.

7. The Gateway SDHF sends the SD-PDU to the SCS/AS.

8. The SCS/AS sends acknowledgement (ACK) to the Gateway SDHF.

9. The Gateway SDHF sends ACK to the Serving SDHF.

10. The Serving SDHF sends ACK to the BS.

11. The BS sends ACK to the IoT device.

Note 1: Step 8~11 is optional.

Note 2: A possible session key derivation based IBS identity is as follows.
If ID1_SK=xH(ID1); ID2_SK=xH(ID2); then K=e(xH(ID1), H(ID2)); K=e(xH(ID2), H(ID1));
Note 3: A possible puzzle generation scheme is as follows.
The BS generates a random number (RAND), and computes a hash value using the H(TS, Rand), where TS is the timestamp. Then, it covers the first/last k bits of RAND, and obtains RAND’. Then, the puzzle can be given as Puzzle=(RAND’, k, H(TS, RAND)).

[image: image1.png]loT Device

Bs |
B -

[serving soHF |__|

Gateway SDHF |

[scs/as |

O Generate Puzdlel, Pule 2, PuzdleN, where
Puzzle1-{Rand’, k, HITS,Rand,..)
puzzle2-{Rand2, k2, HITs Randz,)

1. Broadcase BS Info everyt

BS_1D, TS, P_Ind, Puzzles, Sig_Bs, .|

erfy 5ig_B5 with B5_1D.

B11f ot e, compute o solton 55}

wheres s obtained by searching for the Rand that
makes H[Ts, Ran

{c). Compute K=efuH{Devi

-
10} Hies_1o}}

3. Small Data With PS

]

Vice_ID, PZ¥, S, En(SDS-PDU, K], WA

{5} Verify Ps=Rand of PZ57 f Yes, Goto ¢k No, drop

4. a) Verfy T-Ts<t

) Compute K-ex(8S_ID} H[Device_ID)
(d)Verity MAC and decrypt SDS-POUUSIng K

1. Ack(Optional)

5. Small Data (SD-PDU)

10. Ack(Optional)
U

6. Small Data (SD-PDU)

9. Ack(Optional)

fe - -]

7. Small Data (SD-PDU)

8. Ack(Optional)
e - =

Figure 5.14.4.x-1. A Client-Puzzle-Based Dos Attack Defense Approach for mIoT Infrequent Small Data Transmission
5.14.4.x.3
Evaluation
***************************END OF CHANGES************************
