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Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document’s objectives are to:

a) Investigate whether battery efficient ‘device to enterprise’ mechanisms to provide sufficient security exist.

b) Investigate potential enhancements to 3GPP’s security architecture(s) that enable the Home Operator to be able to offer well guaranteed security to enterprises e.g. to provide security between the UE and a node in the home operator domain. 

c) Both S1 and Gb based architectures should be considered when undertaking b, above.

The impacts of relevant authentication and key agreement procedures are also presented. 
The following should be taken into account for the study:

1. The potential solutions should aim at minimising the energy consumption of devices to help meet the objective of a ten year battery life in the extended coverage situation and take into consideration the very low data rate capability of the radio interface when using the Energy Consumption Evaluation Methodology described in TR45.820.
2. The potential security solutions for devices related to GERAN’s FS_IoT_LC and LTE Rel 13 Low Complexity UEs can take into account that the devices are not expected to be able to access pre-release 13 networks. 
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Definitions, symbols and abbreviations


3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
E2m: End to middle
Gb architecture: 
a system architecture described in TS 23.060 [11] that uses the protocols defined in e.g. 3GPP TSs 24.008 [12], 48.018 [13], 44.064 [14] and 44.065 [15]. 
Note: It implies the use of a USIM application.
S1 architecture:
a system architecture described in TS 23.401 [16] that uses the protocols defined in e.g. 3GPP TSs 24.301 [30] and 36.413 [18]. 
Note: It implies the use of a USIM application.



3.2
Symbols

For the purposes of the present document, the following symbols apply:


||
Concatenation
(
Communication between

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. 
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

AKA

Authentication and Key Agreement

AMF

Authentication Management Field

AuC

Authentication Centre

cIoT
Cellular Internet of Things

CK

Ciphering Key 
CK'
replacement CK for ait interface security to withhold CK from the visited network
CoAP
Constrained Application Protocol
DH

Diffie-Hellman
DLTS
Datagram Transport Layer Security
E-UTRAN

Evolved Universal Terrestrial Radio Access Network

E2E

End to End
EESE
End to End Security Endpoint
EMKS
End to Middle Key Server
EMSE
E2M Security Endpoint
EPS

Evolved Packet System

GBA

Generic Bootstrapping Architecture

GERAN

GSM EDGE Radio Access Network

GGSN

Gateway GPRS Support Node

GTP

GPRS Tunnelling Protocol

HLR

Home Location Registry

HSS

Home Subscriber Server

IK

Integrity Key
IK'
replacement for IK for air interface security to withhold IK from the visited network
IoT
Internet of Things

KDF

Key Derivation Function

LLC

Logical Link Controller

MME

Mobility Management Entity
MTC
Machine Type Communications
P-GW

PDN Gateway

PDN

Packet Data Network

PLMN

Public Land Mobile Network

S-GW

Serving Gateway

SGSN

Serving GPRS Support Node

SQN

Sequence Number

TLS

Transport Layer Security

UE

User Equipment

UMTS

Universal Mobile Telecommunication System

UP

User Plane

USIM

Universal Subscriber Identity Module
4
Background and Key Objectives

4.0 
Motivation 
End-to-end security protocols e.g. DTLS between the MS and an application server provides one way of securing the communication between MS and a cellular IoT application server, irrespective of the nature of the security over the radio access and within the cellular network domain (including both the home network and visited network).

One of the main drawbacks of supporting existing end-to-end security protocols for Cellular IoT devices is the amount of security related signalling – protocol overheads like DTLS handshakes - that needs to be exchanged between MS and the application server before any useful information can be sent (usually a small data packet). The signalling overhead will not only reduce the radio access capacity but, more importantly, increase the energy consumption by the M2M device.  This may make the objective of having devices lasting for years with standard battery power unachievable.

From an application level perspective, the customer may not be satisfied with relying on the user plane security between MS and a visited SGSN (assuming this is implemented) and between the GGSN and the application server since there is a gap in user plane security between the visited SGSN and the GGSN (especially when NDS/IP is not implemented). It is to be noted that the communication between a visited SGSN and GGSN may run over thousands of Kilometres.




Key:



User plane may be encrypted





No user plane encryption
Figure 4-1: User plane security gap between SGSN and GGSN
If user plane security could be extended to the GGSN, or to a nearby MTC server, this may remove the need for additional end-to-end security, which will in turn improve both the radio access capacity and the MS energy consumption. Otherwise, the signalling exchange over the radio access to establish application level security need to be optimised.
The above argument refers to the Gb architecture, but applies equally to the S1 architecture (Serving Gateway replacing SGSN, and PDN gateway replacing GGSN, as appropriate). The terms "Gb architecture" and "S1 architecture" are defined in the next section.

It is recognised that lawful interception regulations may sometimes prohibit confidentiality from being applied between device and home network, particularly in a roaming scenario – see the paragraph beginning "When local or regional regulation allows …" in section 5.1.3. 
4.1
Architectural Assumptions

Based on the answers from GERAN in S3-151219 (GPC150120), SA2 in S3-151442 (S2-151382) and SA1 in S3-151445 (S1-151528), the following should be taken into account:

- Security aspects need to be investigated to be compatible with both Gb and S1 architectures. 

- "Gb architecture" implies a system architecture described in TS 23.060 [11] that uses the protocols defined in e.g. 3GPP TSs 24.008 [12], 48.018 [13], 44.064 [14] and 44.065 [15]. It implies the use of a USIM application.

- "S1 architecture" implies a system architecture described in TS 23.401 [16] that uses the protocols defined in e.g. 3GPP TSs 24.301 [30] and 36.413 [18]. It implies the use of a USIM application.

- Roaming is supported.
- The UE will roam in countries where encryption is allowed and where encryption is not used. SA1 adds that saying that there will be some UEs for which their HPLMN operator does not expect the UE to roam between countries allowing encryption and countries not allowing encryption.

- Inter-RAT mobility is not supported. SA2 has the same understanding. SA1 doesn’t exclude the fact that some devices vendor may implement a multi-RAT UE which would perform PLMN reselection between those different RATs, but they do not precise whether security aspects should be addressed.

- GERAN believes that subscriptions used to access cellular IoT (CIoT) are not expected to be used for other 3GPP RATs and subscriptions used for other 3GPP RATs are not expected to be used to access CIoT. SA1 believes that in general 3GPP subscriptions can be used on any 3GPP access technology.

4.2
Clarification of "Device to Enterprise security" term

 "Device to Enterprise" security refers to a broader scope which could be made from the following, non-exhaustive, combinations:

- security between the Enterprise and the MTC device

- OR security between the Enterprise and the HPLMN, then security between the HPLMN and the MTC device.

- OR security between the Enterprise and the HPLMN, then security between the HPLMN and the VPLMN, then security between the VPLMN and the MTC device.

For those combinations described above, the security protection being applied to a communication would traverse intermediaries which are not able to perform security operations on the data being exchanged between those two endpoints. For instance the "security between the HPLMN and the MTC device" of user plane data may traverse a VPLMN and a GRX network which will not be able to perform security operation (e.g. MAC verification) on those exchanged user plane data between those two endpoints.


[image: image5]
Figure 4.2-1: High level ecosystem

4.3
"Device to enterprise" user plane protection

In clause 7 "Security procedures for secure connection" of 3GPP TS 33.187 [19], GBA (see 3GPP TS 33.220 [20]) and GBAPush (see 3GPP TS 33.223 [21]) were selected as the preferred optional features for addressing the SA1 requirement in "Secure Connection" in clause 7.2.10 and the use case "End-to-end security for roaming MTC devices" in Annex A of 3GPP TS 22.368 [22]. 

As highlighted in the Study Item Description, "Many current MTC users implement "device to enterprise" security. It is believed that these security mechanisms incur a significant data overhead by e.g. frequent security key renegotiation, and, that this data overhead could severely impact the useful battery life of the devices being developed for the above mentioned Work/Study Items."
The study intends to perform a study of those "device to enterprise" security solutions and discover whether they are fit for purpose.

4.4
"Device to HPLMN" user plane protection

In that study, it is needed to "Investigate potential enhancements to 3GPP’s security architecture(s) that enable the Home Operator to be able to offer well guaranteed security to enterprises e.g. to provide security between the UE and a node in the home operator domain.". End-to-middle security (e2m security) denotes security between an UE and a server that is not the communication endpoint. This server can reside in the HPLMN or in a third party network. If the latter the server needs to be authorised to obtain cryptographic keys from the HPLMN.  Also it is needed to consider both Gb and S1 based architectures in this study.

In GPRS system, the user plane data is carried over the following nodes:

UE ( BSS ( SGSN ( GGSN

In EPS system the user plane data is carried over the following nodes:

UE ( eNB ( S-GW (P-GW

When a S4 SGSN is used, the user plane data is carried over the following nodes:

UE ( BSS ( SGSN ( S-GW ( P-GW

In GPRS system, the user plane data is carried in LLC frames between the UE and the SGSN. LLC frames are confidentiality protected between the UE and the SGSN (see 3GPP TS 44.064 [14]).

In EPS system, the user plane data is carried in PDCP PDUs (see 3GPP TS 36.323 [23]) between the UE and the eNB that may be confidentiality protected.

GTP-U (see 3GPP TS 29.281 [24]) packets carry the user plane data between:

- the SGSN and the GGSN,

- the SGSN and the S-GW if S4 interface is used,

- the eNB and the S-GW,

- the S-GW and the P-GW.

In the roaming case, the user plane data is carried between the SGSN and GGSN in a GPRS system (resp. S-GW and P-GW in an EPS system) over a GRX/IPX network (a.k.a inter-PLMN backbone network). The GRX/IPX network is intended to be a trusted network which interconnects several PLMN and service providers either with a direct communication link or through an third parties called GRX/IPX providers. Two PLMNs may communicate over a selected inter-PLMN backbone network that includes border gateway security functionalities (see clause "Packet Domain PLMN Backbone Networks" in clause 5.4.2 of 3GPP TS 23.060 [11]) however those security functionalities aren’t uniformly used.

The user plane data is protected with key derived from GSM/UMTS AKA between the UE and the SGSN for GPRS systems.

The user plane data is protected with keys derived from EPS AKA between the UE and the eNB for EPS systems. 

NDS/IP is used between the eNB and S-GW for EPS systems. 

4.5
Battery usage challenges
According to the FS_IoT_LC Study Item in GP-140421, the types of the devices under study are required to last 10 years on 5Wh battery capacity only. Consequently, reducing the power consumption for security procedures should be taken into account.

A methodology for assessing the battery performance metrics of a particular RAT is described in clause 5.4 of TR 45.820 [25]. 
Editor’s note: Data usage rate constraints for security procedure are ffs
4.6
Cellular IoT Traffic Model

Cellular IoT traffic models are described in Annex E of TR 45.820 [25].

Editor’s note: Add reference of traffic model of MTC REL-13
5
Key Issues

5.1
Issue 1: N-PDU Data Tampering and Eavesdropping

5.1.1
Issue description

Although the air interface may provide confidentiality protection (e.g. with GEA4), the following interfaces are not required to provide data confidentiality: Gp, Gn, S5, S8. This means that N-PDUs exchanged between the MTC device and the GGSN (resp. the P-GW) aren’t consistently confidentiality protected.

Also the air interface, Gp, Gn, S5 and S8 do not provide integrity protection to plaintext or ciphered N-PDUs.

5.1.2
Threat description

In the cellular IoT case, battery constraints mean that higher layer protection (e.g. end to end TLS) is less likely to be present than for other sensitive data carried over cellular connections. The N-PDU packets are therefore likely to be subject to eavesdropping when carried over a GRX/IPX network, thus leaking sensitive data to an eavesdropper or to the visiting network.

In the cellular IoT case, battery constraints mean that higher layer protection (e.g. end to end TLS) is less likely to be present than for other sensitive data carried over cellular connections. The N-PDU packets are therefore likely to be tampered with at the air interface or over a GRX/IPX network, thus sending false/negative reports to the home network.

5.1.3
Security requirements

There should be a mechanism that provides integrity protection to the transmitted N-PDUs between the MTC device and a node within or beyond the home network.

When local or regional regulation allows, it should be possible to provide confidentiality protection to the transmitted N-PDUs that only the UE and a node within or beyond the home network should be able to encrypt/decrypt. 

5.2
Issue 2: Efficient user data protection challenges

5.2.1
Issue description

N-PDUs may consist of the encapsulation of the following protocols: IP, UDP or TCP, TLS/DTLS, Application-level protocol such as HTTP or COAP. Other protocols could be used or could even be omitted from the N-DPU e.g. no IP header. 

The maximum size of a MAR exception message is 200 bytes but let’s assume that the N-PDU should not be greater than 200 bytes, then the following numbers are for consideration:

- An uncompressed IPv4 header may be 20 bytes, while an IPv6 header may be 40 bytes.

- A compressed IPv4/IPv6 header may be 4 bytes while an UDP header is 8 bytes long. The best case is that we end up with 188 bytes allocated for application payload.

- In a year time, a total of 73000 bytes of N-PDU may be exchanged if 200 bytes long MAR exception reports are exchanged on a daily basis. 

- Assuming that a block cipher algorithm of 16 bytes block size is used, the best case is that the plaintext message is 192 bytes, then 176 bytes (192 minus 16), then 160 bytes (176 minus 16) of usable data. 

We therefore end-up with remainders that might be used for something else such as a MAC. The table 5.2.1-1 below summarizes this potential distribution in case both confidentiality and integrity protection are provided.

Table 5.2.1-1

	Plaintext payload size (bytes)
	MAC size (bytes)

	192
	8

	176
	24

	160
	40


5.2.2
Threat description 
5.2.3
Security requirements

The minimum key size for providing data confidentiality and/or integrity should be 128 bits.

If HMAC is used to protect an entire N-PDU, the computed or transmitted MAC value should not be less than 64 bits. The HMAC key should at least be refreshed every year.

If AES-GCM, which is an authenticated encryption algorithm, is used to protect an entire N-PDU, the length of MAC may be 64 bits. However, the integrity key should be refreshed after being used to protect plaintexts/ciphertexts of cumulated length of 215 bytes (meaning a key update two times a year). 

NOTE: the values above are based on requirements and guidelines from Appendix C of NIST SP 800-38D [26].

If AES-CMAC is used to protect an entire N-PDU, the length of MAC may be 64 bits. However, the integrity key should be refreshed after being used to protect plaintexts/ciphertexts of cumulated length of 248 messages when the block size is 128 bits. 

NOTE: the values above are based on requirements and guidelines from Appendix B of NIST SP 800-38B [26]. 
The values above are presented only as indications of how often (as a minimum) keys are likely to be updated. Key refresh will be done based on operator policy – there is no expectation of it being enforced by the 3GPP standard.
5.3
Issue 3: "VPLMN Specific Needs"
5.3.1
Issue description

Devices that roam in a visited network are subject to the regulations of the country of the visited network. A visited network might have certain requirements with respect to what (types of) algorithms are allowed. In particular, for end-to-end and end-to-middle security, lawful interception regulations in some countries might forbid the use of (some) encryption algorithms. Other countries however might allow this type of end-to-end and end-to-middle security and other countries again might forbid or allow specific CIoT devices to use end-to-end and end-to-middle security.

5.3.2
Threat description

5.3.3
Security requirements

Solutions dealing with end-to-end and end-to-middle security should have mechanisms to deal with the regulations depending on the class of CIoT UE device and the regulations applying to the visited network.

5.4
Issue 4: End-to-end security 

5.4.1
Issue description

Requirements with respect to end-to-end security of large scale CIoT deployments could be driven by the requirements of large corporations using CIoT for their specific needs. In particular, multinationals, such as mining and oil companies that use the CIoT UEs for measurement devices will want to have:

· End-to-end security, in particular with respect to the integrity of the measurement data;

· Control over the key material, in particular with respect to how often keys should be refreshed.

5.4.2
Threat description

The threat in these cases is out of the scope of 3GPP, meaning that a violation of the integrity will cause a problem somewhere outside of the 3GPP or operators’ domains. For example, the threat from a violation of the integrity of measurements could range from a wrong decision leading to a less than optimal processing in the plants to deadly mistakes based on misinformation.

5.4.3
Security requirements

The end-user should have control over the frequency of derivation of the key material.

The key-material exchange between the end-users premises and the network should be minimized.

Higher level key material should not leave the 3GPP or operators domain.
6
Candidate Solutions


6.1
Solution #1: "UE to HPLMN" security solutions based on UMTS/EPS AKA enhancements.

6.1.1
Introduction

In section 6.1, "e2m" refers to a UE to HPLMN security association.
The following defines enhanced authentication and key agreement procedures for mobile network with a Cellular Internet-of-Things RAT which extends the UMTS AKA (See 3GPP TS 33.102 [27], clause 6.3) and EPS AKA (3GPP TS 33.401 [28], clause 6.1) procedures:

- While remaining compatible with existing security procedures between the UE and the E-UTRAN defined in 3GPP TS 33.401 [28]

- While remaining compatible with existing security procedures between the UE and the GERAN when UMTS AKA is used as defined in 3GPP TS 33.102 [27]

- To derive additional keys (from IK, and from CK under specific circumstance) securing data in an end-to-end fashion between the UE and a network node within the Home PLMN.
"UE to HPLMN" protection of the user plane data is being provided from the UE to the home network. The new security functionalities the HPLMN needs to support can be implemented as a new network function called HPLMN Security Endpoint (HSE).  The HSE may also be collocated with the GGSN/P-GW.

The new keys shared between UE and HSE are called e2mKEYSET. If e2m security uses separate encryption and integrity algorithms then this keyset will include a cipher key and an integrity key; if e2m security uses a combined authenticated encryption algorithm then this keyset will consist of a single key.

The UE (resp. "UE to HPLMN" security functionality) uses the relevant key to generate/verify a signature/MAC or cipher/decipher the user plane data.
6.1.2
Solution description

6.1.2.1
"UE to HPLMN" security solution with HSE context establishment procedure

Key Establishment Procedure:
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Fig. 6.1.2.1-1 Procedure Diagram
Steps:

0. In addition to the generated authentication vectors as defined in UMTS AKA (resp. EPS AKA), the HSS/HLR:

- in the case of UMTS AKA:

- derives CK´/IK´ from a concatenation of CK and IK, see clause 6.1.2.4 (CK´/IK´ will be used for air interface security) and sets AMF bit to 1 to indicate to the USIM that KDF is required to be done on CK to obtain the usable air interface ciphering and integrity keys

- derives e2mKEYSET from a concatenation of CK and IK, see clause 6.1.2.4
- derives e2mKEYSET_ID from a concatenation of CK and IK, see clause 6.1.2.4
- in the case of EPS AKA:

- from CK and IK, as well as deriving KASME in the usual way, also derives e2mKEYSET and e2mKEYSET_ID, see clause 6.1.2.4 

- sets an AMF bit to 1 to indicate to the UE whether e2m keys should be derived

- builds the AV. For the UMTS AKA case, CK/IK is replaced with the newly generated CK´/IK´.

1a. Distribution of AV to the SGSN/MME 
NOTE: It is recommended to distribute only one AV at a time as the frequency of AKA runs is very low in the MTC scenario.
1b. The HSS/HLR pushes to the HSE the following pair:

-  e2mKEYSET
- e2mKEYSET_ID

- optionally the IMSI


2. SGSN sends the authenticate request message to the UE as defined in TS 33.102 [27] (resp. TS 33.401 [28]).

3. USIM runs UMTS/EPS AKA, and if the AMF bit indicating that additional key derivation is to be done is set to 1, performs the following additional key derivations:

- in the case of UMTS AKA:

- CK´/IK´ (used for Air IF sec) from a concatenation of CK and IK, see clause 6.1.2.4
- e2mKEYSET from a concatenation of CK and IK, see clause 6.1.2.4
- e2mKEYSET_ID from a concatenation of CK and IK, see clause 6.1.2.4
- in the case of EPS AKA:

- e2mKEYSET and e2mKEYSET_ID from CK and IK, see clause 6.1.2.4
4. The UE sends the authenticate response message to the SGSN/MME as defined in TS 33.102 [27] (resp. TS 33.401 [28]).

5a. If no PDP context exist, the UE sends the Activate PDP context request message to the SGSN/MME with a PCO IE which should contain the e2mKEYSET_ID associated with the e2m keys to be used for the protection of the N-PDUs. The PCO IE will be transparently transmitted to the GGSN/P-GW as specified in 3GPP TS 29.060 [29].

5b. If an Update PDP Context request message is instead sent by the UE to the SGSN/MME, a PCO IE shall also be included in the message with the e2mKEYSET_ID associated with the e2m keys to be used for the protection of the N-PDUs. The PCO IE will be transparently transmitted to the GGSN/P-GW as specified in 3GPP TS 29.060 [29].

6. The GGSN/P-GW forwards the e2mKEYSET_ID along with the IMSI indicated in the Activate/Update PDP context message and the TEID as a triplet to the HSE.

6a. The HSE matches the information in the triplet with the recently pushed e2mKEYSET_ID and e2mKEYSET. 

Note: If the HSE doesn’t have a record of the received e2mKEYSET_ID within its memory, then:

- The HSE sends an error message back to the GGSN/P-GW, including the IMSI. 
- On receipt of this error message, the GGSN/P-GW sends an error message to the UE in a PCO IE as specified in 3GPP TS 29.060 [29].
- On receipt of this error message, the UE sends a message to the SGSN/MME requesting a new authentication exchange using newly generated authentication vectors. 

NOTE: This will be a newly standardised feature. Newly defined parameterisations of the Tracking Area Update and/or Routing Area Update messages (with new cause codes, and minimal additional information) may be used for this. Specially, a new Update Type can be defined to indicate a request for reauthentication, and for this Update Type the RAU/TAU message should be made as short as possible by making as many fields optional as possible (including, potentially, some that are mandatory today). Alternatively, new message types may be defined in 3GPP TS 24.008 [12] and 3GPP TS 24.301 [30].
- The new authentication exchange causes the whole process defined here to restart, in particular creating new e2m keys to be pushed to the HSE.
7. The HSE is ready to provide confidentiality and/or integrity protection to the N-PDUs.
The HSE will need a way to flush out e2m key pairs that are never used, rather than retaining them indefinitely. There seems no need to standardise a mechanism for this, but a time-based approach is recommended, deleting keys that remain unused for a specified period after they are generated. The process defined above includes a way to recover if an e2m key pair is deleted that would eventually have been used.
6.1.2.2
"UE to HPLMN" security solution with HLR push procedure – Alternative


 
[image: image7.emf]HSS

GGSN/

PGW

SGSN/

MME

UE

0. Generate AV

[See NOTE];

Derive e2mKEYSET 

Set AMF Bit.

1. AV

2. Authentication 

Request

3. Process the AV 

[See NOTE];

Derive CK/IK/KASME;

Derive e2mKEYSET

4. Auth Response

5. Notification [IMSI, 

GGSN/PDN address]

6.Push e2mKEYSET

NOTE:

For UMTS AKA 

generate CK’, IK’,

Replace CK/IK with 

CK’/IK’;

Set AMF bit

HSE

7. Establish PDP Context

8. Locate e2mKEYSET



Figure 6.1.2.2-1: Procedure Diagram

Procedure:

Steps:

0. In addition to the generated authentication vectors as defined in UMTS AKA (resp. EPS AKA), the HLR/HSS:

- in the case of UMTS AKA:

- derives CK´/IK´ from a concatenation of CK and IK, see clause 6.1.2.4 (CK´/IK´ will be used for air interface security) and sets AMF bit to 1 to indicate to the USIM that KDF is required to be done on CK to obtain the usable air interface ciphering and integrity keys

- derives e2mKEYSET from a concatenation of CK and IK, see clause 6.1.2.4
- in the case of EPS AKA:

- from CK and IK, as well as deriving KASME in the usual way, also derives e2mKEYSET, see clause 6.1.2.4
- sets an AMF bit to 1 to indicate to the UE whether e2m keys should be derived

- While building the AV and for the UMTS AKA case only, replaces CK/IK with the newly generated CK´/IK´.

1. Distribution of AV to the SGSN/MME 
NOTE: It is recommended to distribute only one AV at a time as the frequency of AKA runs is very low in the MTC scenario.

2. The SGSN/MME sends the authenticate request message to the UE as defined in TS 33.102 [27] (resp. TS 33.401 [28]).

3. The USIM runs UMTS/EPS AKA, and if the AMF bit indicating that additional key derivation is to be done is set to 1, performs the following additional key derivations:

- in the case of UMTS AKA:

- CK´/IK´ (used for Air IF sec) from a concatenation of CK and IK, see clause 6.1.2.4
- e2mKEYSET from a concatenation of CK and IK, see clause 6.1.2.4
- in the case of EPS AKA:

- e2mKEYSET from CK and IK, see clause 6.1.2.4
4. The UE sends the authenticate response message to the SGSN/MME as defined in TS 33.102 [27] (resp. TS 33.401 [28]).

5. Upon successful UMTS AKA (resp. EPS AKA) authentication result and successful PDP context activation as defined in 23.002 [31] (Resp. PDN Connectivity Request, see 3GPP TS 23.401 [16]), the SGSN/MME sends a notification message to the HLR/HSS with the IMSI, the SQN value (or RAND) and the GGSN/P-GW address as parameters.

6. The HLR/HSS pushes e2mKEYSET to the HSE 
7. UE initiates establishment of PDP Context at the GGSN/PGW. The need for the E2M security is indicated.

8. The GGSN/P-GW forwards the e2mKEYSET_ID along with the IMSI indicated in the Activate/Update PDP context message and the TEID as a triplet to the HSE. The HSE matches the information in the triplet with the recently received e2mKEYSET_ID and e2mKEYSET from the HSS.
Editor’s note: Need to specify what happens if for some reason there’s no stored E2M key at the HLR/HSS. This is similar to it not being at the HSE when required in solution 6.1.2.1. Solution 6.1.2.1 now describes a recovery mechanism (step 8b) if there’s no key at the HSE.
6.1.2.3
"UE to HPLMN" security solution with HSE pull procedure

Key Establishment Procedure:
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Fig. 6.1.2.3-1
Process flow diagram
Steps:

0. In addition to the generated authentication vectors as defined in UMTS AKA (resp. EPS AKA), the HLR/HSS:

- in the case of UMTS AKA:

- derives CK´/IK´ from a concatenation of CK and IK, see clause 6.1.2.4 (CK´/IK´ will be used for air interface security) and sets AMF bit to 1 to indicate to the USIM that KDF is required to be done on CK to obtain the usable air interface ciphering and integrity keys
- derives e2mKEYSET from a concatenation of CK and IK, see clause 6.1.2.4
- in the case of EPS AKA:

- from CK and IK, as well as deriving KASME in the usual way, also derives e2mKEYSET, see clause 6.1.2.4
- sets an AMF bit to 1 to indicate to the SGSN/MME/UE whether E2E keys should be derived

- While building the AV and for the UMTS AKA case only, replaces CK/IK with the newly generated CK´/IK´.

1. Distribution of AV to the SGSN/MME 
NOTE: It is recommended to distribute only one AV at a time as the frequency of AKA runs is very low in the MTC scenario.

2. The SGSN/MME sends the authenticate request message to the UE as defined in TS 33.102 [27] (resp. TS 33.401 [28]).
3. The USIM runs UMTS/EPS AKA, and if the AMF bit indicating that additional key derivation is to be done is set to 1, performs the following additional key derivations:

- in the case of UMTS AKA:

- CK´/IK´ (used for Air IF sec) from a concatenation of CK and IK, see clause 6.1.2.4
- e2mKEYSET from a concatenation of CK and IK, see clause 6.1.2.4
- in the case of EPS AKA:

- e2mKEYSET from CK and IK, see clause 6.1.2.4
4. The UE sends the authenticate response message to the SGSN/MME as defined in TS 33.102 [27] (resp. TS 33.401 [28]).
5a. If no PDP context exist, the UE sends the Activate PDP context request message to the SGSN/MME with a PCO IE which should contain the SQN value (or RAND) from the AV and associated IMSI to the GGSN. The PCO IE will be transparently transmitted to the GGSN/P-GW as specified in 3GPP TS 29.060 [29].

5b. If an Update PDP Context request message is instead sent by the UE to the SGSN/MME, a PCO IE shall also be included in the message. The PCO IE should contain the SQN value (or RAND) and associated IMSI. The PCO IE within the Update PDP Context request message will be transparently transmitted to the GGSN/P-GW as specified in 3GPP TS 29.060 [29].

6. The GGSN/P-GW forwards the SQN value (or RAND) along with the IMSI indicated in the Activate/Update PDP context message and the TEID as a triplet to the HSE.

7 & 8. The HSE fetches e2mKEYSET from the HSS/HLR by providing the SQN value (or RAND) and associated IMSI

Editor’s note: it is FFS whether and how E2E CK/IK key could be retained or recreated by the HLR/HSS in order to be pulled by the HSE.
9. The HSE is ready to provide confidentiality and/or integrity protection to the N-PDUs.
6.1.2.4
Key derivation rules

The following is one possible way of implementing the key derivation rules. Other possible implementations options may be defined.

The key derivation function should be supported by the UICC and the HLR/HSS and is written as KDF (Key, S) below.

The key derivation algorithm KDF should be HMAC SHA 256 (as defined in 3GPP TS 33.220 [20]).
For the UMTS AKA case, the following key derivation applies:

· CK´||IK´ = KDF (CK||IK, key type 1).

NOTE: CK´ goes from bit 0 to bit 127, IK´ goes from bit 128 to bit 255. Key type 1 is an ASCII string pointing to the purpose of the key use, e.g. "VPLMN_CIoT".

· e2mKEYSET = KDF (CK||IK, key type 2). 
NOTE: If e2mKEYSET includes more than 256 bits of key material, then multiple instances of KDF are used with different key type strings (key type 2A, key type 2B, etc).

· If the solution requires an e2mKEYSET_ID then e2mKEYSET_ID = KDF (CK||IK, key type 3).

For the EPS AKA case, the derivation of e2mKEYSET and e2mKEYSET_ID (if required) is the same as in the UMTS AKA case. For the visited network, though, KASME is derived as usual.
NOTE: if an AKA algorithm such as TUAK were used, that can generate 256-bit CK and IK, then the key derivation formulae above could be different, with keys for the visited network security generated purely from CK, and keys for the e2m security derived purely from IK. 256-bit CK and IK are currently outside the scope of 3GPP standards, however.

6.1.2.5
Solution variant: End to Middle Key Server
Solution #2 uses an End to Middle Key Server (EMKS) (see sections 6.2.2.1, 6.2.2.2), which sits logically between the HLR/HSS and what is called the EMSE (the equivalent of the HSE in this solution). This can be added as a variant to any of the solution #1 options described above. With this variant, there is no difference to how keys are derived for the visited network, but the e2m key is done differently, in two steps: 

1.
Whenever an Authentication Information Request from the SGSN or the MME arrives at the HLR/HSS, then the HLR/HSS checks the subscription profile for the need to derive an e2m_int_key. If needed according to the subscription profile, the HLR/HSS derives e2m_int_key from CK, IK and a string pointing to the purpose of the key use, namely e2m security for CIoT, where the derivation of e2m_int_key has the form


e2m_int_key = KDF (CK||IK, string)


and the string could be set to e.g. "e2m_ CIoT".

2.
The EMKS derives e2m_key from e2m_int_key, using the key derivation rule




e2mKEYSET = KDF (e2m_int_key, key type 2)



and if necessary also




e2mKEYSET_ID = KDF (e2m_int_key, key type 3)



where key type 2 and key type 3 are as described in section 6.1.2.4.

In all cases, keys are delivered from HLR/HSS to EMKS; either push or pull can be used from EMKS to HSE, according to the particular solution option.



6.1.2.6
Solution variant: key derivation on the ME (EPS AKA only)

In all of the solution descriptions above, new key derivation operations are required on the USIM. (From a concatenation of CK and IK, the USIM derives one or more of CK´/IK´, e2mKEYSET, e2mKEYSET_ID, according to the particular solution variant. An AMF bit is used to indicate whether these additional key derivations are required.)

In the case of EPS AKA, new key derivation is only required to produce e2mKEYSET and (in one variant) e2mKEYSET_ID. Rather than doing this on the USIM, an alternative is for the new key derivation options to be performed by the ME. In this case the USIM does nothing new – it just generates CK and IK as usual. Key derivation operations are illustrated in Figure 6.1.2.C-1. 
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Figure 6.1.2.C-1: Key derivation

Use of the AMF bit is no longer necessary if this variant is adopted.

Editor’s note: It is FFS whether key derivation on the ME is also an appropriate option in the UMTS AKA case.

6.1.3
Solution evaluation

All of the variants in this section create an e2m keyset, shared between UE and HSE, that can be used to provide confidentiality (where permitted) and integrity. This contributes towards satisfying key issue #1. However, this solution does not on its own specify what confidentiality and integrity mechanism (e.g. TLS, IPsec) makes use of the shared keyset.

Key issue 2 is satisfied well as long as keys are relatively long lived (both device-to-visited-network keys and e2m keys), so that authentication challenges and responses on the air interface are infrequent.

The solution requires new functionality in the HSS. It also requires new functionality in the USIM, except in the solution variant "key derivation on the ME (EPS AKA only)" in section 6.1.2.C.
It seems necessary to keep the visited network and e2m security associations synchronised: if keys are updated for one, then they need to be updated for the other too.

Variant 6.1.2.2 requires the HLR/HSS to retain an e2m key pair until a notification message is received from the SGSN/MME. This type of stateful behaviour is not standard in today’s HLRs. Adopting the End to Middle Key Server solution variant (section 6.1.2.5) avoids this problem.
6.2
Solution #2: "End-to-middle security based on AKA"
6.2.1
Introduction

The present solution builds on solution#1. It is presented as a delta description to solution#1, i.e. the description of the present solution contains only those elements that differ from solution#1.

Solution#1 is explicitly meant for "mobile network with a Cellular Internet-of-Things RAT". The present solution can be used for CIoT as well (which is why it is included in the present TR). It should be noted, though, that there is no technical reason why the present solution should be restricted to the CIoT use case; it can provide e2m security whenever AKA is run in a mobile network. 

While solution#1terminates the additional user plane protection in a HPLMN Security Endpoint (HSE) the present solution is applicable to any endpoint, called "E2M Security Endpoint" (EMSE), that is authorised to obtain e2m keys from the E2M Key Server (EMKS). The EMKS derives an e2m key from an intermediate key (e2m_int_key) the EMKS obtains from the HSS. . 


An EMSE may reside in an operator’s home network, but also in a trusted third party domain (e.g. a CIoT application provider platform). The EMKS always resides in an operator’s home network.
There may be multiple instances of an EMSE, with which a UE engages simultaneously or sequentially. There is typically only one instance of an EMKS per HSS.

As usual in 3GPP standardisation, EMSE and EMKS denote functional entities that could be implemented stand-alone or combined with HSS or GGSN or P-GW. EMSE and EMKS could also be combined. The advantage of introducing the EMKS is that the HSS could continue to operate in a stateless fashion.
6.2.2
Solution description

6.2.2.1
End-to-middle security solution based on AKA

Transparency for core network nodes: 
SGSNs, GGSNs, MMEs, S-GWs, P-GWs may work with the present solution without any CIoT-specific enhancements. This is not to say that such enhancements would not be useful for certain use cases,  but it means that there is no mandatory pre-condition on the UMTS or EPS core network elements. This transparency of the solution for the core network is important for deployments as many operators may be reluctant to upgrade their core networks for the purpose of supporting CIoT. (To be sure, the HSS and HLR would need CIoT-specific enhancements.)

Transparency for the USIM: 
The possibility to re-use USIMs without CIoT-specific additions is important as particular CIoT use cases may not warrant the modification of USIMs for their purposes. The present solution can re-use existing USIMs. CIoT specific operations can be done in the ME.

In contrast to the present solution, solution#1 has the following text: "USIM … performs the following additional key derivations: - CK´/IK´…" and again "The key derivation function should be supported by the UICC…". These key derivations on the USIM are CIoT-specific. (This does not apply to the solution variant "key derivation on the ME (EPS AKA only)" in section 6.1.2.C.)
Push vs. pull procedures 

The present solution can work with any of the push or pull procedure variants from solution#1 that are used to transport the e2m key from the EMKS to the EMSE. For transporting the intermediate key e2m_int_key from the HSS to the EMKS, only a push procedure is used. 
6.2.2.2
Key derivation rules

As for solution#1, the present solution uses a new key pair CK´, IK´for UMTS PS or GPRS access security between UE and SGSN. For EPS, KASME can be re-used as defined today. 

The present solution differs from solution#1 in the derivation of the additional user plane key. In solution#1, this key is called "e2mKEYSET". It is used between UE and HSE. In the present solution, this key is called "e2m_key". It is used between UE and EMSE. 
The e2m key is derived in two steps: 

(1) Whenever an Authentication Information Request from the SGSN or the MME arrives at the HSS, then the HSS checks the subscription profile for the need to derive an e2m_int_key. The HSS then generates authentication vectors and sends them back to the SGSN or MME. If needed according to the subscription profile, the HSS derives e2m_int_key from CK, IK and a string pointing to the purpose of the key use, namely e2m security for CIoT, where the derivation of e2m_int_key has the form
e2m_int_key = KDF (CK||IK, string)

and the string could be set to e.g. "e2m_ CIoT". The HSS sends e2m_int_key to the EMKS.

(2) The EMKS derives e2m_key from e2m_int_key. As there may be multiple instances of EMSE it becomes necessary to include an identifier of the EMSE in the key derivation in order to achieve key separation between EMSEs. We therefore propose the following key derivation rule: 

e2m_key = KDF (e2m_int_key, EMSE_Id, string)
Editor's Note: it is ffs whether the additional input 'string' is needed in the derivation of e2m_key. It may be appropriate to allocate FC values for the purpose of the two key derivations in steps 1) and 2) according to TS 33.220 [20], B.2.2.

6.2.2.3
Usage of e2m security
Solution#1 (except for the solution variant "key derivation on the ME (EPS AKA only)" in section 6.1.2.C) mentions the use of a, yet to be specified, bit in the Authentication Management Field (AMF) to indicate to the UE whether the UE has to derive the keys CK´ and IK´ for access security. The information on whether this specific AMF-bit is to be set or not needs to be fed into the Authentication Centre. How this information is stored and fed into the AuC does not need to be standardised from an interoperability point of view. However, it may be beneficial to do so for HSS or HLR vendors as standardisation would reduce the number of implementation variants requested by customers. 

As the information on whether this specific AMF-bit is to be set is subscriber-specific it should be stored in the subscriber records. However, it is not part of the subscriber profile that is sent to the serving node. 
NOTE: The use of an AMF bit, as described above, is still open. If used it would imply that there are two kinds of AKA runs: (1) AMF bit set: access security keys for use between UE and SGSN and e2m keys for use between UE and EMSE are derived; (2) AMF bit not set: only access keys are derived. The third case, namely an AKA run that establishes ONLY e2m keys, should not arise as it would necessitate significant changes to the security as defined today between UE and SGSN: the SGSN would have to support running an AKA without deriving access keys, and, in particular, the SGSN would have to interpret the AMF bit. Cf., however, solution#3 where a different approach is taken to decouple AKA runs for access security from AKA runs for e2m security. 
6.2.3
Solution evaluation

Solution 2 generalises solution 1. Solution 2 enables using the simplified key agreement mechanism for IoT purposes not only for IoT servers (EMSEs) residing in the operator's home network, but also for EMSEs residing in third party networks, if so desired. Furthermore, solution 2 leaves the possibility open to provide an end-to-middle key that was agreed according to the procedures in this clause to any application layer security protocol based on shared keys. Finally, solution 2 is not limited to protocols and architectures that require GGSN support for the distribution and use of the end-to-middle key.


6.3
Solution #3: "Independent VPLMN and e2m security associations"
6.3.1
Introduction

Solutions #1 and #2 use a single AKA run, with additional subsequent key derivations, to derive both e2m keys and keys for the usual UE-to-VPLMN security.  This achieves efficiency, but comes with some challenges in terms of maintaining the synchronisation between the e2m and UE-to-VPLMN security associations.

The present solution, by contrast, uses separate, independent AKA runs for the e2m and UE-to-VPLMN key derivations. This simplifies some issues, at the cost of more AKA runs (with the consequent battery drain implications).

This solution can be used with a HPLMN Security Endpoint (HSE), as described in solution #1, or with a more general  e2m Security Endpoint (EMSE) as described in solution #2. In what follows we refer to the HSE, but an EMSE could be used instead.

6.3.2
Solution description

6.3.2.1
Independent VPLMN and e2m security associations
The AKA operations, key derivations and overall security flow for the "traditional" UE-to-VPLMN security are unchanged in this solution.

A new domain is defined for e2m security– neither Circuit Switched (CS) nor the usual Packet Switched (PS) but Home Packet Switched (HPS).  The USIM maintains a separate HPS key set, with associated CKSN and KSI (in the same way that USIM already maintains separate CS and PS keysets).

Whenever the GGSN/PGW gets a Create Session Request from the S-GW it starts an AKA run. The P-GW is informed about the fact that the requesting UE is a CIoT UE through either:

-
The use of a PCRF. The PCRF informs the P-GW during the IP CAN session setup that this particular UE is a CIoT  UE. The P-GW obtains the IMSI either through the PCRF IP CAN Session Setup message or through the Create Session Request message that it got from the S-GW. In either way, the IMSI is forwarded to the HSE to obtain the AV.

-
By means of the subscription profile stored in the HSS. The S-GW or the P-GW could obtain the subscription profile. If it is possible for the S-GW to obtain the subscription profile, it could inform the P-GW that this particular UE is a CIoT UE. In case the S-GW does not obtain the subscription profile the P-GW could request the subscription profile itself and find out that this UE is a CIoT UE. The IMSI is obtained through the Create Session Request and forwarded to the HSE.


Subsequent AKA runs piggy back on the same mechanism. Whenever a new session between the P-GW and CIoT UE is established, the HSE is triggered, requests a fresh AV and performs an AKA run. The sessions expire according to a policy set in the subscription profile. The term session refers to the data bearer between P-GW and CIoT. This implies that the UE keeps the CIoT security context in memory whenever the UE goes to sleep / idle mode.

The HSE requests an AKA vector from the HLR/HSS. Note: if the HLR/HSS uses the array scheme for SQN management (see TS 33.102 [27] sections C.1.2 and also section C.3.4) then it may use a set of IND values exclusively for the HPS domain. In the EPS AKA case, where the AV will contain KASME, the PLMN ID used as input for the derivation of KASME should refer to the HPLMN, but should be different from the PLMN_ID that would be used for that network in regular (non-e2m) KASME derivation.

The HSE derives e2mKEYSET from CK/IK (UMTS AKA case) or from KASME (EPS AKA case) using the key derivation KDF defined in 3GPP TS 33.220 [20]:

-
e2mKEYSET = KDF (CK||IK, key type). 
NOTE: key type is an ASCII string specific to this key derivation operation, e.g. "e2m_CIoT". If e2mKEYSET includes more than 256 bits of key material, then multiple instances of KDF are used with different key type strings (key type A, key type B, etc).

The HSE formulates an authentication challenge message, containing all the same AV fields as a standard authentication challenge, which it delivers to the GGSN/P-GW.  The GGSN/P-GW sends this challenge message to the UE, via the PCO channel.

The USIM runs UMTS/EPS AKA as normal. The USIM also derives e2mKEYSET, following the same derivation rule as the HSE.

The UE sends the authentication response to the GGSN/P-GW via the PCO channel. The GGSN/P-GW passes this response to the HSE, which validates it against the expected response. Assuming that the authentication is successful, e2mKEYSET is now shared between the HSE and the UE, ready to be used to provide confidentiality and/or integrity protection to the N-PDUs.

6.3.3
Solution evaluation

This solution creates an e2m keyset, shared between UE and HSE, that can be used to provide confidentiality (where permitted) and integrity. This contributes towards satisfying key issue #1. However, this solution does not on its own specify what confidentiality and integrity mechanism (e.g. TLS, IPsec) makes use of the shared keyset.

Key issue 2 is satisfied well as long as keys are relatively long lived (both device-to-visited-network keys and e2m keys), so that authentication challenges and responses are infrequent (both the usual challenges from the VPLMN and the e2m challenges delivered over the PCO channel). The solution is not optimised to the same extent as solutions #1 or #2, because provisioning the two sets of shared keys requires two authentication challenges and responses, not one. However, there is a gain in simplicity, because there is no need to keep the two security associations in sync – either can be updated at any time with no impact on the other.

This solution has no impact on the HLR/HSS, unlike solutions #1 and #2.

6.4
Solution #4: "Security policies"
6.4.1
Introduction

This section includes some security policy requirements and/or preferences that can be sent from the home network to the visited network, and applied in the visited network. These may be used irrespective of which key sharing solution is preferred from previous sections. They may also be applied in a broader context – they are not specific to battery constrained use cases or to IoT use cases.

6.4.2
Solution description

6.4.2.1
Authentication and key usage policy

The battery lifetime of CIoT devices could benefit from a reduced authentication frequency and, hence, a prolonged lifetime of keys. The visited network may not know about the need for a CIoT-specific authentication and key usage policy. It needs to be told by the home network. 

On the other hand, the home network may know more about the security requirements applying to individual devices, and may know that there should be a certain minimum frequency at which visited network keys are changed. In solutions #1 and #2, where visited network and e2m keys are in effect derived simultaneously, this could also be a mechanism for the home network to ensure / request that e2m keys are changed with a certain minimum frequency.
It is proposed to include a new field in the GPRS, 3G or 4G subscriber profiles that determines the authentication and key usage policy required for this subscriber. Including this information in the subscriber profile has two benefits: 

· The specifications of the interfaces between serving node and HLR or HSS need not be modified as subscriber profiles can be carried over these interfaces today.

· The solution can remain transparent for core network nodes as an SGSN or an MME that does not understand the new field in the subscriber profile simply ignores it.

6.4.2.2
Algorithm policy
It is proposed to include a new field in the GPRS, 3G or 4G subscriber profiles that specifies which cryptographic algorithms are allowed to be used for radio interface security for this subscriber (including both AS and NAS in the 4G case). 

Including this information in the subscriber profile has the same benefits as for the previous point. This may be particularly beneficial for IoT devices that have very long lifetimes, where there is a higher risk of weaknesses appearing in an algorithm during that lifetime. 
Conversely, if the visited network is able to indicate to the home network what security features / algorithms the visited network will use, the home network may use this in determining its own e2m security policy.
6.4.2.3
VPLMN Specific Algorithm policies
Different Visited PLMNs will have different requirements with respect to whether end-to-end or end-to-middle encryption is allowed from a Lawful Interception perspective. These LI requirements may depend on the type of subscription and the type of device used. To cater for these requirements, it is proposed to include a new field into the GPRS, 3G or 4G subscriber profile that specifies to which class of devices the CIoT UE belongs. What algorithms are allowed might also be subject to regulations or Lawful Interception.
Editor’s Note: The expertise of SA3-LI is required to determine whether LI requirements in the VPLMN may indeed depend on the type of subscription and the type of device used, and whether information obtained from the HPLMN would be useful for the VPLMN in fulfilling its LI requirements. The usefulness of the proposed field in the subscriber profile depends on the answers from SA3-LI. It is ffs how the SGSN could learn about the type of device used as the subscriber profile contains only subscription-related information.
Additionally, roaming contracts should specify for which classes of CIoT UEs which encryption algorithms are allowed. During an AKA run, these policies will have to be enforced by the home network.


6.4.3
Solution evaluation

The authentication and key usage policy can help with key issue #2, ensuring that authentication challenges and responses are not too frequent. 

The algorithm policy does not address the specific security requirements identified in section 5.1.3, but can help to ensure that the visited network security is as good as possible, reducing some of the tampering and eavesdropping risks identified in section 5.1. 
The VPLMN Specific Algorithm Policies addresses key issue 5.3 if applied to the solutions that provide end-to-end and end-to-middle security.
6.5
Solution #5: "End-to-end security solution"
6.5.1
Introduction

The present solution builds on solutions #3 by reusing components and mechanisms already introduced in that solution. Solutions #3 was initially meant to be used for end-to-middle, but parts can be used with only minor modifications for end-to-end security. In this section we describe how an end-to-end solution is constructed based on the components from solution #3.

6.5.2
Solution Description

6.5.2.1
Specific e2e security association

This section of the solution is based on solution #3 where it is proposed to have two separate key runs, one for the UE-to-VLPMN and one for the CIoT purpose. In this solution, it is proposed to extend this feature to have an additional set of keys for UE-to-Enterprise security.

In solution #3 an e2mKEYSET is derived and used in an HSE / EMSE to terminate the secure connection. In this solution, we use a new security end point node in the network of the enterprise. The new node inside the enterprise network will be called EESE (End-to-End Security Endpoint). An EESE is basically an EMSE that is located in the enterprise network or even integrated with the CIoT application platform. The EESE may have interfaces that the EMSE does not have.
As described in solution #3, the UE and HSS derive an e2mKEYSET in a separate AKA run for a newly created HPS domain. In this solution, it is proposed to add another domain, the EnPS (Enterprise Packed Switched) domain and derive a key specifically for this domain. The HSS can distinguish between the two domains based on a new field in the subscriber profile that indicates whether for a CIoT UE the EnPS domain is applicable. It is proposed to derive the key as follows:


e2e_int_key = KDF(CK||IK, string),

where the string can be set to "CIoT End-to-end". The HSS forwards the e2e_int_key to the EMKS inside the operator’s network and the EESE can obtain the e2e_int_key from the EMKS. Contrary to solution #3, the e2e_int_key will be  used to derive further e2eKEYSETs which are the keys used for securing the data transfer between EESE and UE. 
6.5.2.2
Derivation of e2eKEYSET

The e2eKEYSET is derived according to:


e2eKEYSET = KDF(e2e_int_key, RAND),

where a RAND is introduced to ensure that derivation of the e2eKEYSET is unpredictable.

It is proposed that the EESE is the source of the RAND and to let the EESE transport the RAND to the UE. Alternatively, in case the EESE might not have a reliable random source available, the operator could provide the random to the EESE via the EMKS. Furthermore, the EESE derives the e2eKEYSET based on the RAND that is optionally provided by the EMKS.

6.5.2.3
Triggering the key derivation

In order to ensure that both the UE and the EESE have the same keys and do the key derivation at the same time, it is necessary to trigger the key derivation. In this solution, the key derivation trigger is exchanged over the existing connection as a control message. What happens is as follows:

1. 
Upon deriving a e2eKEYSET a timer te2e is set in the EESE;

2.
Whenever the timer runs out, the EESE sets a flag invalidating the keys;

3.
Upon next contact from the UE, the EESE replies with an error message indicating the reason (key has expired). This step is skipped whenever the EESE triggers new contact.

4.
The EESE generates a fresh RAND (or triggers the EMKS that a new RAND is needed), derives the new e2eKEYSET and forwards the RAND to the UE, which derives the new e2eKEYSET.

5.
The UE or EESE transmit the message.

6.5.2.4
Setting the timer

The value of the time te2e may be specified by the enterprise. The EESE may also support a local command for the enterprise to expire e2eKEYSET immediately – this is outside the scope of the standard.
6.5.2.5
Interfaces of the EESE

The EESE may have a number of interfaces:


-
An interface between the EESE and the EMKS for the exchange of the e2e_int_key;


-
An interface to receive a RAND from e.g. the EMKS;


-
An interface that allows the CIoT operator platform to let the enterprise expire the keys immediately, which is 

out of scope of the standard.
6.5.3
Solution Evaluation

This solution fulfils the requirement of an end-to-end security mechanism between the Enterprise and the UE, thereby fulfilling the requirement 5.4. And because it builds upon solutions #3, it also fulfils the requirement #1 by deriving a key that can be used for encrypting data between the UE and the EESE and it can fulfils requirement #2 by picking the right KDF.
6.6
Solution #6: Bearer protection

6.6.1
Introduction

The present solution builds on the previous AKA key derivation solutions, such as solution #1 and #2, sections 6.1 and 6.2 respectively.  It is presented as a delta, i.e. the description of the present solution contains only elements in addition to those solutions.  The solution proposes user plane protection utilizing the AKA key derivation solutions documented in those sections.  

6.6.2
Solution description

In order to protect the user plane data between the UE and the HSE it is required to implement IPsec ESP according to RFC 4303 [36] as profiled by TS 33.210 [37], with confidentiality, integrity and replay protection.  The e2m key pairs shared between the UE and the HSE used to negotiate and maintain the e2m IPsec Security Associations (SAs) are derived as described in solutions #1 and #2 of the document. 

NOTE: The choice of crypto suites is not restricted further from the ones in TS 33.210, but due to computational efficiency, the use of AEAD algorithms combining authentication and encryption is preferred.

NOTE: The solution does not mandate the use of tunnel versus transport-mode ESP. 

NOTE:  While header compression is expected to further improve efficiency of the solution, this contribution neither mandates it nor puts forward the use of specific compression algorithms.

6.6.3
Solution evaluation

The current solution satisfies key issue #1 and its requirements, by providing IPsec-based integrity and confidentiality protection against tampering and eavesdropping. 

By pointing to the standard list of crypto suites in TS 33.210, the solution allows for the use of crypto algorithms that conform with regional and visited network requirements, thus satisfies the requirement of key issue 3. 
Editor’s Note:  The method of deriving or negotiating the IPsec ESP Security Association parameters is FFS.
6.7
Solution #X: "End-to-end" for solutions 1 and 2

6.7.1
Introduction

Each of the solutions #1 and #2 can be used for end-to-end encryption by placing the HSE or EMSE in the CIoT application domain (as is mentioned as well in solution #2). Even though such a solution may satisfy some clients needs, none of the solutions will satisfy key issue #4. In this section, we provide a solution that works on top of solution #1 and #2.

6.7.2
Solution #1 and #2 in End-to-End case

The solution #1 and #2 can be adapted to do both end-to-end and fulfil key issue #4 by deriving another key from e2mKEYSET (sol. #1) and e2m_key (sol. #2), namely the e2eKEYSET according to section 6.5.2.2. In this case, the HSE (sol. #1) or EMSE (sol. #2) can be the source of the RAND and transport the RAND to the UE, but the HSE/EMSE can also obtain the RAND from an external or trusted source such as the EMKS or HSS.

The UE could know that it should derive an additional e2eKEYSET by receiving a signalling message that is replay, confidentiality and integrity protected form the HSE/EMSE that it requires e2e instead of e2m that includes a RAND. The HSE knows that it should apply e2e from a configuration setting that tells it to derive e2e keys.

Additionally, keys can be refreshed independently by using the mechanism described in 6.5.2.3. For this purpose the same signalling message that instructs the UE to derive a new key can  be reused.

In order to satisfy key issue #4, the HSE/EMSE may be equipped with an interface that the CIoT application provider can use to initiate a key derivation. However, such an interface may be out of scope of the standardisation.

6.7.3
Solution Evaluation

This solution shows how using solutions #1 and #2 it is possible to also fulfil requirement #4. Compared to solution #5, this solution is slightly less flexible since the end-to-end keys must always be refreshed whenever a new AKA run is necessary.

7
Conclusions

7.1
Issues Identified

This report identifies that:

· Using current traditional end to end security methods such as IPsec and DLTS may have significant power and network traffic capacity overheads when used by battery efficient devices to transfer small data packets over a 3GPP system.
· For low power MTC devices, end to middle security that reuses 3GPP security procedures and keys is likely to be significantly more efficient than end to end security.  The current 3GPP system can only secure information between the UE and the SGSN of the visited network and does not extend to the home GGSN.
· Any security mechanism specified by 3GPP for end to middle security needs to take into account local and home regulations on encryption of data and lawful intercept.

The report identifies the following key issues relating to battery efficient machine type communication:

· N-PDU data tampering and eavesdropping – It recommends that an integrity mechanism be provided to prevent tampering of N-PDU data and a confidentiality mechanism (where allowed) to prevent eavesdropping on the data content.

· Efficient user data protection – It recommends that the minimum key size for confidentiality should be 128 bits and where a HMAC is used this should not be less than 64bits.  

· Visited PLMN specific needs – It recommends that any proposed solution should have mechanisms to disable confidentiality protection where local laws in the visited country require this.  Also mechanisms need to exist for Lawful intercept of data where applicable.

· End to End security – The enterprise should have control over the frequency of derivation of the key material, the key material exchanges should be minimised and that higher level key material should not leave the 3GPP or operator domain.

7.2
Solution evaluation summary

The report proposes the following solutions:

· Solution #1 "UE to HPLMN security based on UMTS/EPS AKA enhancements".  This solution uses enhancements to the 3GPP AKA to generate key material used by the end to end or end to middle security mechanisms.  The solution is intended for use over the cellular IoT RAT where the middle endpoint is a HSE. The solution proposes a mechanism that protects the key materials from being exposed to the visited network but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection. Variants of this solution are proposed that differ in how and when the key material is delivered to the non-UE end of the communication as follows:

· "Variant A" where the HSS/HLR pushes key materials to the relevant HSE when an AKA generation occurs that includes end to middle key generation.  In this solution the HSE needs to store the generated keys until they are used.

· "Variant B" where the HSS/HLR pushes key materials to the relevant HSE when a PDP context activation occurs following a successful AKA exchange with the UE that includes end to middle key generation. In this solution the HSS/HLR needs to store the generated keys until they are used.

· "Variant C" where the HSE pulls the key materials from the HSS/HLR when an PDP context activation occurs following a successful AKA exchange with the UE that includes end to middle key generation. In this solution the HSS/HLR needs to store the generated keys until they are used.

· "Variant D" where the HSS/HLR pushes key materials to a new standardised key store entity called an End to Middle Key Server (EMKS) when an AKA generation occurs that includes end to middle key generation.  The HSE pulls the key materials from the EMKS when a PDP context activation occurs following a successful AKA exchange with the UE that includes end to middle key generation.  In this solution the EMKS needs to store the generated keys until they are used.

· "Variant E" is a modification of variants a, b, c and d where the USIM only performs an unmodified AKA procedure and the creation of the local end to middle key values is calculated on the ME. 

· Solution #2 "End to middle security based on AKA with an EMSE".  This solution defines a new middle endpoint called an E2M Security Endpoint (EMSE).  This solution uses the EMKS defined in solution #1d to store the end to middle keysets and the processes in solution #1e where the UE end to middle keys are generated in the ME so that no modifications to the current USIM is required.  The solution proposes a mechanism that protects the key materials from being exposed to the visited network but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection. 

· Solution #3 "Independent VPLMN and e2m security associations".  This solution proposes a separate specific AKA run to generate the end to middle key material when they are needed so that there is no inter-relationship or related synchronisation issues with the AKA run for network access.  The solution does not require modification of the HSS/HLR or the USIM but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection and uses more power/network resources to deliver as it requires 2 AKA runs.   Although this solution requires two AKA procedures initially (Solution 1 and 2 only require one AKA procedure), further AKA runs only depend on the use and timing of the user plane data and not on any aspect of a 3GPP RAT.

· Solution #4 "Security Policies". This solution describes the sharing of security policies between the HPLMN and Visited PLMN that relate to the frequency and type of security features supported so that the visited network can identify CIoT devices and adjust their security model appropriately.  This solution does not address the agreement on key materials or the mechanisms that use these keys to deliver integrity protection and confidentiality protection.

· Solution #5 "End to End security solution". This solution introduces a new element, the End to End Security Endpoint (EESE) that allows an authorised third party to fetch end to end keysets that have been agreed using one of the methods detailed in solutions 1, 2 or 3.  It also presents a key aging and re-agreement mechanism using a timer.  It does not however detail the security mechanisms that these keys are used with.

· Solution #6 "Bearer protection". This solution introduces IPsec ESP for authentication, integrity and confidentiality protection of the user-plane between the UE and the HSE using the keys derived by the UE and HSS and distributed to the HSE according to solutions #1 or #2.  For crypto algorithms the solution points the 33.210.  The solution does not stipulate on tunnel vs. transport mode ESP and on compression methods.  Furthermore the solution does not define the derivation or negotiation of the IPsec ESP Security Association parameters.

· Solution #7 "End to End".  The solution extends solutions 1 and 2 to End to End security. However this solution does not currently deal with mechanisms for LI and optional data cyphering.

The solutions are further summarised as follows:

Table 7.2-1 Summary overview of the proposed solutions

	Solution
	Endpoints
	Tampering and eavesdropping protection
	Efficient device power and network use
	Visited PLMN needs addressed
	Confidentiality and integrity mechanism specified
	Nodes potentially effected

	1A
	E2M
	Yes
	efficient
	Yes
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1B
	E2M
	Yes
	efficient
	Yes
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1C
	E2M
	Yes
	efficient
	Yes
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1D
	E2M
	Yes
	efficient
	Yes
	No
	EMKS, HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1E
	E2M
	Yes
	efficient
	Yes
	No
	EMKS, HSS/HLR, and ME

	2
	E2M
	Yes
	efficient
	Yes
	No
	EMKS, HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	3
	E2M
	Yes
	less efficient
	Yes
	No
	EMKS and ME

	4
	-
	Yes
	efficient
	Yes
	No
	UE

	5
	E2E
	Yes
	efficient
	No
	No
	EMKS, EESE and UE

	6
	E2M
	Yes
	efficient
	No
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	7
	E2E
	Yes
	efficient
	No
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW


Annex A: AKA procedures assessment in very low data throughput environment
A.1
Introduction
In order to assess whether a security protocol is suitable for use in a situation wherein the battery capacity is limited and wherein the data rate is very low, it is necessary to provide measurable information to evaluate the potential impacts on the MTC device’s battery life and the quality of service. 

The following presents the description of UMTS AKA, DTLS or GBA procedures that are likely to be used in M2M or in a Cellular IoT context (as in defined by GERAN in 3GPP TR 45.820 [25]). 

According to 3GPP TR 45.820 [25], the minimum data throughput over one channel is 160 bps for both uplink and downlink. This throughput will be taken as the base to calculate the time to transmit.

A.2 is the breakout example of the UMTS AKA [AddRef] procedure.

A.3 is the breakout example of DTLS 1.2 [AddRef] handshake procedure with ECDHE-ECDSA ciphersuite.

A.4 is the overhead description of a DTLS record header for ciphered data

A.5 is the breakout example of a TLS handshake session resumption procedure.

A.6 is the breakout of GBA with the shared-based mutual authentication procedure between UE and NAF [AddRef].
A.2
UMTS AKA

The following tables describe the messages during a successful UMTS AKA procedure which are exchanged between a UE and a SGSN. The authentication message request sent from the SGSN to the UE is defined in 3GPP TS 24.008 [12] and can be described as below:

	Payload Name
	M/O/C
	Parameter name
	min size (byte)
	max size (byte)
	min size (bits)
	max size (bits)
	Case (bits)
	Transmit time (s)
	Comments

	Authentication and Ciphering Request
	
	
	
	
	
	
	

	
	M
	protocol discriminator
	
	
	4
	4
	4
	
	

	
	M
	Skip indicator
	
	
	4
	4
	4
	
	

	
	M
	message type
	1
	1
	8
	8
	8
	
	

	
	M
	Ciphering algorithm
	
	
	4
	4
	4
	
	

	
	M
	IMEISV request
	
	
	4
	4
	4
	
	

	
	M
	Force to standby
	
	
	4
	4
	4
	
	

	
	M
	A&C reference number
	
	
	4
	4
	4
	
	

	
	O
	Authentication parameter RAND
	17
	17
	136
	136
	136
	
	

	
	C
	Cipher key sequence number
	1
	1
	8
	8
	8
	
	only included if RAND is present

	
	O
	Authentication parameter AUTN
	18
	18
	144
	144
	144
	
	

	Final total
	
	
	320
	320
	320
	2
	

	Ciphering Key Sequence Number IE
	
	
	
	
	
	
	

	
	
	IEI
	
	
	
	4
	
	
	

	
	
	spare
	
	
	
	1
	
	
	

	
	
	key sequence
	
	
	
	3
	
	
	

	Total
	
	
	
	8
	
	
	

	Authentication Parameter IE

	
	
	RAND IEI
	
	1
	
	8
	
	
	

	
	
	RAND value
	
	16
	
	128
	
	
	

	Total
	
	
	
	136
	
	
	

	Authentication Parameter AUTN IE

	
	
	AUTN IEI
	
	1
	
	8
	
	
	

	
	
	Length of AUTN
	
	1
	
	8
	
	
	

	
	
	AUTN
	
	16
	
	128
	
	
	

	Total
	
	
	
	144
	
	
	

	AUTN

	
	
	SQN xor AK
	
	
	
	48
	
	
	

	
	
	AMF
	
	
	
	16
	
	
	

	
	
	MAC
	
	
	
	64
	
	
	

	Total
	
	
	
	128
	
	
	


Table A.2-1: Authentication and Ciphering Request

The authentication message response sent from the UE to the SGSN is defined in 3GPP TS 24.008 [12] and can be described as below:

	Payload Name
	M/O/C
	Parameter name
	min size (byte)
	max size (byte)
	min size (bits)
	max size (bits)
	Case (bits)
	Transmit time (s)
	Comments

	Authentication and Ciphering Response

	
	M
	protocol discriminator
	
	
	4
	4
	4
	
	

	
	M
	Skip indicator
	
	
	4
	4
	4
	
	

	
	M
	message type
	1
	1
	8
	8
	8
	
	

	
	M
	A&C reference number
	
	
	4
	4
	4
	
	

	
	M
	spare
	
	
	4
	4
	4
	
	

	
	O
	Authentication Response parameter
	5
	5
	40
	40
	40
	
	

	
	O
	IMEISV
	11
	11
	88
	88
	0
	
	

	
	O
	Authentication Response parameter (extension)
	3
	14
	24
	112
	0
	
	

	Final total
	
	
	176
	264
	64
	0.4
	

	Authentication Response parameter IE

	
	
	IEI
	
	1
	
	8
	8
	
	

	
	
	RES (most significant bits)
	
	4
	
	32
	32
	
	

	Total
	
	
	
	40
	40
	
	

	Authentication Response parameter (extension) IE

	
	
	IEI
	
	1
	
	8
	
	
	

	
	
	Length
	
	1
	
	8
	
	
	

	
	
	RES (all but 4 most significant octets)
	0
	12
	
	96
	
	
	

	Total
	
	
	
	112
	
	
	


Table A.2-2: Authentication and Ciphering Response

A.3
DTLS handshake for ECDHE-ECDSA configuration

A.3.1
DTLS handshake procedure measurement

The following describes the DTLS Record and Handshake messages exchanged for the ECDHE-ECDSA configuration sent between the UE and a Server is defined in IETF RFC 6347 [33] and IETF RFC 4492 [34].
Table A.3.1-1: High level DTLS Handshake procedure measurement
	DTLS handshake for ECDHE-ECDSA

	Direction
	Step
	Message Name
	Size (bits)
	transmit time (s)

	C -> S
	1
	ClientHello
	608
	

	subtotal
	608
	

	subtotal with compressed IP/UDP headers
	704
	4.4

	subtotal with IP/UDP headers
	928
	5.8

	S -> C
	2
	ServerHello
	728
	

	

	S -> C
	2
	Server Certificate
	800
	

	

	S -> C
	2
	ServerKeyExchange
	1128
	

	

	S -> C
	2
	ServerHelloDone
	72
	

	subtotal
	2728
	

	subtotal with compressed IP/UDP headers
	2824
	17.65

	subtotal with IP/UDP headers
	3048
	19.05

	C -> S
	3
	ClientKeyExchange
	592
	

	

	C -> S
	3
	ChangeCipherSpec
	48
	

	

	C -> S
	3
	Finished
	168
	

	subtotal
	808
	

	subtotal with compressed IP/UDP headers
	904
	5.65

	subtotal with IP/UDP headers
	1,128
	7.05

	S -> C
	4
	ChangeCipherSpec
	48
	

	

	S -> C
	4
	Finished
	168
	

	subtotal
	216
	

	subtotal with compressed IP/UDP headers
	312
	1.95

	subtotal with IP/UDP headers
	536
	3.35

	TOTAL with compressed IP/UDP headers
	4,744
	29.65

	TOTAL with  IP/UDP headers
	5,640
	35.25




A.3.2
TLS Record and Handshake message measurement

The TLS Record message is defined as follow:
Table A.3.2-1: Record message header measurement
	Payload Name
	M/O/C
	Parameter name
	min size (byte)
	max size (byte)
	min size (bits)
	max size (bits)
	ECDHE ECDSA Case (bits)
	Comments

	RECORD MESSAGE

	
	
	Content Type
	1
	1
	8
	8
	8
	

	
	
	Protocol Version
	2
	2
	16
	16
	16
	

	
	
	Length
	2
	2
	16
	16
	16
	

	
	
	Fragment
	0
	16384
	0
	131072
	message dependent
	The Handshake messages will be contained within a Record Message

	header total
	40
	

	final total
	5
	16389
	40
	131112
	message dependent
	




The TLS record encapsulates Handshake messages (as well as Change Cipher Spec messages) which are defined as follows:
Table A.3.2-2: Handshake message header measurement
	Payload Name
	M/O/C
	Parameter name
	min size (byte)
	max size (byte)
	min size (bits)
	max size (bits)
	ECDHE ECDSA Case (bits)
	Comments

	HANDSHAKE MESSAGE

	
	
	Handshake type
	1
	1
	8
	8
	8
	

	
	
	Length
	3
	3
	24
	24
	24
	

	
	
	body
	0
	4095
	
	
	message dependent
	The message content itself e.g. the ClientHello

	header total
	32
	

	final total
	message dependent
	




The TLS Handshake messages are further described as follows:
Table A.3.2-3: ClientHello message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ClientHello ECDHE ECDSA case (Direction: Client -> Server)

	
	Protocol Version
	16
	

	
	Random
	256
	

	
	Session ID
	8
	first time (only length byte)

	
	Cipher Suites
	48
	One cipher suite e.g. TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, 2 length bytes, renegotiation ciphersuite

	
	Compression methods
	16
	Length byte + NULL

	
	extensions
	192
	2 byte total ext length field + 2 byte Sig Alg ext ID + 2 byte ext len + 2 byte list len + Sig Alg (2) + 2 byte Curve ext ID + 2 byte ext len + 2 byte list len + 2 byte curve ID + 2 byte Point Format ext ID + 2 byte ext len + 1 byte list len + 1 byte format.

	final total
	
	536
	

	final total with record and handshake headers
	608
	


Table A.3.2-4: ServerHello message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ServerHello ECDHE ECDSA case (Direction: Server -> Client)

	
	Protocol Version
	16
	

	
	Random
	256
	Independently generated from the ClientHello.Random

	
	Session ID
	256
	The assigned Session ID

	
	Cipher Suite
	16
	One cipher suite e.g. TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

	
	Compression methods
	8
	null

	
	extensions
	104
	e.g. brainpoolP256r1(26); 2 byte total ext length field + 2 byte Renego ext ID +  2 byte ext len + 1 byte + 2 byte Point Format ext ID + 2 byte ext len + 1 byte list len + 1 byte format

	final total
	656
	

	final total with record and handshake headers
	728
	


Table A.3.2-5: Certificate message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	Certificate ECDHE ECDSA case (Direction: Server -> Client)

	final total
	ASN.1Cert certificate list
	728
	example Raw Public Certificate ECDSA P-256: 91 bytes

	final total with record and handshake headers
	800
	





Table A.3.2-6: ServerKeyExchange message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ServerKeyExchange ECDHE ECDSA case (Direction: Server -> Client)

	
	ServerECDHParams
	544
	

	
	Signature
	512
	

	final total
	
	1056
	

	final total with record and handshake headers
	1128
	


Table A.3.2-7: ServerKeyExchange message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ServerHelloDone ECDHE ECDSA case (Direction: Server -> Client)

	total
	0
	

	final total with record and handshake headers
	72
	


Table A.3.2-8: ClientKeyExchange message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ClientKeyExchange ECDHE ECDSA case (Direction: Client -> Server)

	
	exchange keys
	520
	The client selects an ephemeral ECDH public key corresponding to the parameters it received from the server according to the ECKAS-DH1 scheme from IEEE 1363

	final total
	520
	

	final total with record and handshake headers
	592
	





Table A.3.2-9: ChangeCipherSpec message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ChangeCipherSpec ECDHE ECDSA case (Direction: Client -> Server)

	
	Change cipher spec
	8
	To help avoid pipeline stalls, ChangeCipherSpec is an independent TLS protocol content type, and is not actually a TLS handshake message.

	final total
	8
	

	final total with record header
	48
	





NOTE: ChangeCipherSpec messages aren’t handshake messages and are directly encapsulated in a record message.
Table A.3.2-10: Finished message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	Finished ECDHE ECDSA case (Direction: Client -> Server)

	
	verify data
	96
	

	final total
	
	96
	

	final total with record and handshake headers
	168
	


Table A.3.2-11: ChangeCipherSpec message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ChangeCipherSpec ECDHE ECDSA case (Direction: Server -> Client)

	
	Change cipher spec
	8
	To help avoid pipeline stalls, ChangeCipherSpec is an independent TLS protocol content type, and is not actually a TLS handshake message.

	final total
	
	8
	

	final total with record header
	48
	




Note: ChangeCipherSpec messages aren’t handshake messages and are directly encapsulated in a record message.
Table A.3.2-12: Finished message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	Finished ECDHE ECDSA case (Direction: Server -> Client)

	
	verify data
	96
	

	final total
	
	96
	

	final total with record and handshake headers
	168
	



A.4
DTLS record header overhead description for ciphered data

A.4.1
DTLS record header measurement

The following describes the overhead of DTLS record header per ciphered data:
Table A.4.1-1: DTLS Record Layer per-packet overhead measurement
	Parameter name
	min size (bits)
	max size (bits)
	ECDHE ECDSA Case (bits)
	Comments

	DTLS Record Layer Per-Packet Overhead (see also Appendix B of IETF dice profile 10)

	DTLS record layer header
	104
	104
	104
	

	nonce
	64
	64
	64
	RFC 6655 [RFC6655] allows the nonce_explicit to be a sequence number or something else. This document makes this use more restrictive for use with DTLS: the 64-bit none_explicit MUST be the 16-bit epoch concatenated with the 48-bit seq_num. The sequence number component of the nonce_explicit field at the AES-CCM layer is an exact copy of the sequence number in the record layer header field. This leads to a duplication of 8-bytes per record.

To avoid this 8-byte duplication RFC 7400 [RFC7400] provides help with the use of the generic header compression technique for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs). Note that this header compression technique is not available when DTLS is exchanged over transports that do not use IPv6 or 6LoWPAN, such as the SMS transport described in Appendix A. 

	ICV
	64
	64
	64
	

	total
	232
	

	DTLS record layer header

	content type
	8
	8
	
	

	version
	16
	16
	
	

	epoch
	16
	16
	
	

	sequence number
	48
	48
	
	

	length
	16
	16
	
	




A.5
TLS handshake session resumption

A.5.1
TLS handshake session resumption procedure measurement

The following describes the TLS Record and Handshake messages exchanged for the ECDHE-ECDSA configuration for session resumption between the UE and a Server.
Table A.5.1-1: High level DTLS Handshake session resumption procedure measurement
	DTLS handshake for ECDHE-ECDSA

	Direction
	Step
	Message Name
	Size (bits)
	transmit time (s)

	C -> S
	1
	ClientHello
	864
	

	subtotal
	
	
	864
	

	subtotal with compressed IP/UDP headers
	
	
	960
	6

	subtotal with IP/UDP headers
	
	
	1184
	7.4

	S -> C
	2
	ServerHello
	736
	

	subtotal
	
	
	736
	

	subtotal with compressed IP/UDP headers
	
	
	832
	5.2

	subtotal with IP/UDP headers
	
	
	1056
	6.6

	C -> S
	3
	ChangeCipherSpec
	48
	

	C -> S
	3
	Finished
	168
	

	subtotal
	
	
	216
	

	subtotal with compressed IP/UDP headers
	
	
	312
	1.95

	subtotal with IP/UDP headers
	
	
	536
	3.35

	S -> C
	4
	ChangeCipherSpec
	48
	

	S -> C
	4
	Finished
	168
	

	subtotal
	
	
	216
	

	subtotal with compressed IP/UDP headers
	
	
	312
	1.95

	subtotal with IP/UDP headers
	
	
	536
	3.35

	TOTAL with compressed IP/UDP headers
	
	 
	2,416
	15.1

	TOTAL with  IP/UDP headers
	
	 
	3,312
	20.7




A.5.2
TLS Record and Handshake message measurement

The TLS Record message is defined as follow:
Table A.5.2-1: Record message header measurement
	Payload Name
	M/O/C
	Parameter name
	min size (byte)
	max size (byte)
	min size (bits)
	max size (bits)
	ECDHE ECDSA Case (bits)
	Comments

	RECORD MESSAGE

	
	
	Content Type
	1
	1
	8
	8
	8
	

	
	
	Protocol Version
	2
	2
	16
	16
	16
	

	
	
	Length
	2
	2
	16
	16
	16
	

	
	
	Fragment
	0
	16384
	0
	131072
	message dependent
	The Handshake messages will be contained within a Record Message

	header total
	40
	

	final total
	5
	16389
	40
	131112
	message dependent
	




The TLS record encapsulates Handshake messages (as well as Change Cipher Spec messages) which are defined as follows:
Table A.5.2-2: Handshake message header measurement
	Payload Name
	M/O/C
	Parameter name
	min size (byte)
	max size (byte)
	min size (bits)
	max size (bits)
	ECDHE ECDSA Case (bits)
	Comments

	HANDSHAKE MESSAGE

	
	
	Handshake type
	1
	1
	8
	8
	8
	

	
	
	Length
	3
	3
	24
	24
	24
	

	
	
	body
	0
	4095
	
	
	message dependent
	The message content itself e.g. the ClientHello

	header total
	32
	

	final total
	message dependent
	




The TLS Handshake messages are further described below:
Table A.5.2-3: ClientHello message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ClientHello ECDHE ECDSA case (Direction: Client -> Server)

	
	Protocol Version
	16
	

	
	Random
	256
	

	
	Session ID
	264
	32 byte session + 1 length byte

	
	Cipher Suites
	48
	One cipher suite e.g. TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, 2 length bytes, renegotiation ciphersuite

	
	Compression methods
	16
	Length byte + NULL

	
	extensions
	192
	2 byte total ext length field + 2 byte Sig Alg ext ID + 2 byte ext len + 2 byte list len + Sig Alg (2) + 2 byte Curve ext ID + 2 byte ext len + 2 byte list len + 2 byte curve ID + 2 byte Point Format ext ID + 2 byte ext len + 1 byte list len + 1 byte format.

	final total
	
	792
	

	final total with record and handshake headers
	864
	


Table A.5.2-4: ServerHello message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ServerHello ECDHE ECDSA case (Direction: Server -> Client)

	
	Protocol Version
	16
	

	
	Random
	256
	Independently generated from the ClientHello.Random

	
	Session ID
	264
	The assigned Session ID + length byte

	
	Cipher Suite
	16
	One cipher suite e.g. TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

	
	Compression methods
	8
	null

	
	extensions
	104
	2 byte total ext length field + 2 byte Renego ext ID +  2 byte ext len + 1 byte + 2 byte Point Format ext ID + 2 byte ext len + 1 byte list len + 1 byte format

	final total
	664
	

	final total with record and handshake headers
	736
	


Table A.5.2-5: ChangeCipherSpec message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ChangeCipherSpec ECDHE ECDSA case (Direction: Client -> Server)

	
	Change cipher spec
	8
	To help avoid pipeline stalls, ChangeCipherSpec is an independent TLS protocol content type, and is not actually a TLS handshake message.

	final total
	8
	

	final total with record header
	48
	








Note: ChangeCipherSpec messages aren’t handshake message and are directly encapsulated in a record message
Table A.5.2-6: Finished message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	Finished ECDHE ECDSA case (Direction: Client -> Server)

	
	verify data
	96
	

	final total
	
	96
	

	final total with record and handshake headers
	168
	


Table A.5.2-7: ChangeCipherSpec message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ChangeCipherSpec ECDHE ECDSA case (Direction: Server -> Client)

	
	Change cipher spec
	8
	To help avoid pipeline stalls, ChangeCipherSpec is an independent TLS protocol content type, and is not actually a TLS handshake message.

	final total
	8
	

	final total with record header
	48
	





Note: ChangeCipherSpec messages aren’t handshake message and are directly encapsulated in a record message

Table A.5.2-8: Finished message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	Finished ECDHE ECDSA case (Direction: Server -> Client)

	
	verify data
	96
	

	final total
	
	96
	

	final total with record and handshake headers
	168
	



A.6
GBA bootstrapping procedure

A.6.1
Bootstrapping procedure description measurement

The following is an example signalling flow demonstrating a successful bootstrapping procedure found in 3GPP TS 24.109 [34].

Table A.6.1-1: Successful Bootstrapping Procedure Description

	Step
	Example message
	Character count

	Initial GET request (UE to BSF)
	GET / HTTP/1.1

Host: bsf.home1.net:80

User-Agent: Bootstrapping Client Agent; Release-6; 3gpp-gba-tmpi

Date: Thu, 08 Jan 2004 10:13:17 GMT

Accept: */*

Authorization: Digest

        username="user1_private@home1.net",

        realm="bsf.home1.net",

        nonce="",

        uri="/",

        response=""
	302 UTF-8 Chars

302 bytes



	Unauthorized response (BSF to UE)
	HTTP/1.1 401 Unauthorized

Server: Bootstrapping Server; Release-6

Date: Thu, 08 Jan 2004 10:13:17 GMT

WWW-Authenticate: Digest

        realm="bsf.home1.net",

        nonce= base64(A34Cm+Fva37UYWpGNB34JP),

        algorithm=AKAv1-MD5,

        qop="auth-int", opaque="5ccc069c403ebaf9f0171e9517f30e41"
	299 UTF-8 Chars

299 bytes

	GET request (UE to BSF)
	GET / HTTP/1.1

Host: bsf.home1.net:80

User-Agent: Bootstrapping Client Agent; Release-6; 3gpp-gba-tmpi

Date: Thu, 08 Jan 2004 10:13:18 GMT

Accept: */*

Authorization: Digest

        username="user1_private@home1.net",

        realm="bsf.home1.net",

        nonce="base64(A34Cm+Fva37UYWpGNB34JP)",

        uri="/", qop=auth-int,

        nc=00000001,

        cnonce="6629fae49393a05397450978507c4ef1",

        response="6629fae49393a05397450978507c4ef1",

        opaque="5ccc069c403ebaf9f0171e9517f30e41",

        algorithm=AKAv1-MD5
	530 UTF-8 Chars

530 bytes

	200 OK response (BSF to UE)
	HTTP/1.1 200 OK

Server: Bootstrapping Server; Release-6; 3gpp-gba-tmpi

Authentication-Info: qop=auth-int,

        rspauth="6629fae49394a05397450978507c4ef1",

        cnonce="6629fae49393a05397450978507c4ef1",

        nc=00000001,

        opaque="5ccc069c403ebaf9f0171e9517f30e41",

        nextnonce="base64(A34Cm+Fva37UYWpGNB34JP)"

Date: 

Expires: Thu, 08 Jan 2004 10:23:17 GMT

Content-Type: application/vnd.3gpp.bsf+xml

Content-Length: 255 

<?xml version="1.0" encoding="UTF-8"?>

<BootstrappingInfo xmlns="uri:3gpp-gba">

  <btid>user@bsf.operator.com</btid>

  <lifetime>2004-05-28T13:20:00Z</lifetime>

  <Extension>

    <currenttime>2004-05-27T13:20:00Z</currenttime>

  </Extension>

</BootstrappingInfo>
	705 UTF-8 Chars

705 bytes

	total
	
	1836 UTF-8 Chars

1836 bytes

14688 bits


The compressed IP and TCP header overhead per message is 24 bytes, therefore the total amount of data that is transmitted over the air is 15456 bits.

A.6.2
PSK-TLS procedure measurement in GBA case.

The following describes the PSK-TLS procedures compliant with the shared key-based mutual authentication between UE and NAF procedure defined in clause 5.4 of 3GPP TS 33.222 [35].
Table A.6.2-1: Shared key-based mutual authentication between UE and NAF
	TLS handshake PSK-TLS for GBA

	Direction
	Step
	Message Name
	Size (bits)
	transmit time (s)

	C -> S
	1
	ClientHello
	520
	

	subtotal
	
	
	520
	

	subtotal with compressed IP/TCP headers
	
	
	712
	4.45

	S -> C
	2
	ServerHello
	640
	

	S -> C
	2
	ServerKeyExchange
	216
	

	S -> C
	2
	ServerHelloDone
	72
	

	subtotal
	
	
	928
	

	subtotal with compressed IP/TCP headers
	
	
	1120
	7

	C -> S
	3
	ClientKeyExchange
	392
	

	C -> S
	3
	ChangeCipherSpec
	48
	

	C -> S
	3
	Finished
	168
	

	subtotal
	
	
	608
	

	subtotal with compressed IP/TCP headers
	
	
	800
	5

	S -> C
	4
	ChangeCipherSpec
	48
	

	S -> C
	4
	Finished
	168
	

	subtotal
	
	
	216
	

	subtotal with compressed IP/TCP headers
	
	
	408
	2.55

	TOTAL with compressed IP/TCP headers
	
	
	3,040
	19




The TLS Handshake messages are further described as follows:
Table A.6.2-2: ClientHello message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ClientHello PSK-TLS case (Direction: Client -> Server)

	
	Protocol Version
	16
	

	
	Random
	256
	

	
	Session ID
	0
	First time

	
	Cipher Suites
	32
	Two cipher suite e.g.

TLS_PSK_WITH_AES_128_CBC_SHA256, one PSK-based cipher suite.

	
	Compression methods
	8
	NULL

	
	extensions
	136
	

	final total
	
	448
	

	final total with record and handshake headers
	520
	


Table A.6.2-3: ServerHello message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ServerHello PSK-TLS case (Direction: Server -> Client)

	
	Protocol Version
	16
	

	
	Random
	256
	Independently generated from the ClientHello.Random

	
	Session ID
	256
	The assigned Session ID

	
	Cipher Suite
	32
	Two cipher suite e.g.

TLS_PSK_WITH_AES_128_CBC_SHA256, one PSK-based cipher suite.

	
	Compression methods
	8
	null

	
	extensions
	0
	

	final total
	568
	

	final total with record and handshake headers
	640
	


Table A.6.2-4: ChangeCipherSpec message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ChangeCipherSpec PSK-TLS case (Direction: Server -> Client)

	
	psk identity hint
	144
	3GPP-bootstrapping

	final total
	144
	

	final total with record header and handshake headers
	216
	


Table A.6.2-5: ServerHelloDone message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ServerHelloDone PSK-TLS case (Direction: Server -> Client)

	total
	0
	

	final total with record and handshake headers
	72
	



Table A.6.2-6: ClientKeyExchange message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ClientKeyExchange PSK-TLS case (Direction: Client -> Server)

	
	psk identity
	320
	3GPP-bootstrapping;user@bsf.operator.com

	final total
	320
	

	final total with record header and handshake headers
	392
	


Table A.6.2-7: ChangeCipherSpec message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ChangeCipherSpec PSK-TLS case (Direction: Client -> Server)

	
	Change cipher spec
	8
	To help avoid pipeline stalls, ChangeCipherSpec is an independent TLS protocol content type, and is not actually a TLS handshake message.

	final total
	8
	

	final total with record header
	48
	













Table A.6.2-8: Finished message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	Finished PSK-TLS case (Direction: Client -> Server)

	
	verify data
	96
	

	final total
	
	96
	

	final total with record and handshake headers
	168
	


Table A.6.2-9: ChangeCipherSpec message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	ChangeCipherSpec PSK-TLS case (Direction: Server -> Client)

	
	Change cipher spec
	8
	To help avoid pipeline stalls, ChangeCipherSpec is an independent TLS protocol content type, and is not actually a TLS handshake message.

	final total
	8
	

	final total with record header
	48
	


Table A.6.2-10: Finished message measurement
	Payload Name
	Parameter name
	Size (bits)
	Comments

	Finished PSK-TLS case (Direction: Server -> Client)

	
	verify data
	96
	

	final total
	
	96
	

	final total with record and handshake headers
	168
	








Annex B: Review of security standardization efforts in other SDOs 

Annex B collects information on security standardization efforts in other standards organizations (SDOs) that are relevant for this study. This body of work includes security procedures that are optimized for constrained environments. 
B.1
(D)TLS optimization efforts in IETF 
B.1.1
Background
Editor’s note: This section presents the current status of evolving work, and would need to be updated after substantial progress in IETF. 

CoAP is the most promising IoT protocol that also GERAN is expected to be used with Cellular IoT. CoAP was developed for constrained environments, and for this reason, it may seem strange that IETF choose DTLS as the primary security mechanism for CoAP. It is widely known that TLS is heavy in terms of negotiation roundtrips and amount of data sent during the negotiation. However, it seems that IETF wanted to re-use security mechanism that has already been proven, and widely deployed. By making this decision, IETF seemed to make also a commitment to solve the efficiency problems of DTLS to better fit the needs of CoAP. IETF community has been very active on finding solutions to the latency and overhead issues of DTLS. The commitment of solving the problems can be seen e.g. in the TLS working group charter that describes some of the main design goals for (D)TLS v1.3: 

"Develop modes to reduce handshake latency, which primarily support HTTP-based applications, aiming for one roundtrip for a full handshake and one or zero roundtrip for repeated handshakes." [4]
The CoAP security story is based heavily on the use of DTLS with raw public keys. One deployment scenario assumes that IoT UEs would have a pre-installed asymmetric public key, and that a (truncated) hash of the public key would be used as the IoT UE identifier. The identifiers could be collected by using a barcode on the outside of the device, and stored in the server side. The identifiers would then be used to create access control lists about the IoT UEs that may use DTLS. Using strong cryptography for DTLS connection negotiation makes it possible to elongate the lifetime of the connection. 

The other important assumption is that the IoT UE may not need to create DTLS sessions with several entities but only few, ideally only one. From this point of view, the situation is very different from a more typical TLS deployment scenario where TLS is supposed to be used with any server. This makes some of the DTLS protocol features look a little odd, e.g. why send the certificates (or even the information about the supported security algorithms) in every DTLS handshake if the end-points remains the same. There is obviously room for optimization in order to make the DTLS more suitable for CoAP. 

B.1.2
Existing and evolving TLS optimizations 

The main technique for making DTLS more suitable for CoAP is to leave the DTLS session open for much longer period of time than it is left open in other application contexts. This mode of operation is described in CoAP protocol, and the basic idea seems to be that if the DTLS handshake is done using strong credentials, it needs not to be closed that soon. This saves energy and resources from IoT UE. 

"DTLS connections in RawPublicKey and Certificate mode are set up using mutual authentication so they can remain up and be reused for future message exchanges in either direction.  Devices can close a DTLS connection when they need to recover resources, but in general they should keep the connection up for as long as possible.  Closing the DTLS connection after every CoAP message exchange is very inefficient." [5]
DTLS connection created using shared secrets is not mentioned, however, this does not mean that DTLS handshake created using 3GPP credentials stored in UICC would not meet the security requirements for leaving the DTLS connection open for a longer period of time. 

Other reasons why DTLS connection can be left open more easily is that the proxy/server connected to UE is dedicated to server a restricted set of UEs. The amount of state maintained in proxy/server can be pre-calculated, and the risk of DoS attacks is not that severe. From the UE point of view, the amount of data that is sent over the DTLS connection at a time is very small. This means that there is less data available for a potential attacker to figure out the keys. 

The dice WG (DTLS In Constrained Environments) is currently discussing about more optimized DTLS handshake procedures, and DTLS profiles for CoAP. For example, the draft-ietf-dice-profile [10] gives recommendations for chip manufacturers and software vendors on how to implement (D)TLS in CoAP devices. draft-ietf-dice-profile is a very useful document because it collects references to various RFCs and I-Ds together, and does not introduce any changes to (D)TLS but rather guides for better interoperability. It is based on (D)TLS 1.2, and strongly recommends resuming a (D)TLS sessions instead of running full handshake. However, draft-ietf-dice-profile is not a piece of work describing any real TLS optimizations as such. draft-ietf-dice-profile is currently in IESG review for publication. 

B.1.3
Making the full handshake lighter

There are at least two strategies for making the TLS handshake lighter. First one is trying to reduce the size of the certificates sent during the handshake, and the second one modifying the handshake itself in order to make it more compact. 

On the certificate side, the raw public key certificates specified in RFC 7250 use ASN.1Cert format that is lighter than the full X.509 certificates. For the constrained environments, even more lightweight certificate format has been proposed [6]. There is also work going on where the certificates are cached in the TLS client removing the need of sending it every time a new TLS connection is negotiated [7]. This would be a useful feature in CoAP where the communication end-point seldom changes. 

TLS 1.3 that is currently under development in IETF is trying to reduce the number of messages sent in the full TLS handshake [8]. The current version includes a 1,5 roundtrips handshake (instead of 2 roundtrips of TLS 1.2). The 1,5 roundtrips mode was only possible when resuming existing TLS 1.2 sessions. This more optimized TLS handshake is very likely to be included in the next TLS standard (Figure B.1.3-1). 
      ClientHello

      ClientKeyShare            -------->

                                                      ServerHello

                                                   ServerKeyShare

                                <--------                Finished
      Finished                  -------->

Figure B.1.3-1: Full TLS 1.3 handshake (optional/situational messages omitted)

B.1.4
Resuming existing connection 

A full TLS 1.2 handshake requires 2-roundtrips (four messages) before the handshake is completed, and the application can start sending application data [9]. This means not only an increase in latency but also more security related data to be sent. It is also possible to resume earlier TLS sessions but also in this case the handshake requires 1,5-roundtrips (three messages). The amount of bits is reduced radically if compared to full handshake. We estimate that the saving would be roughly 60%. 
The TLS working group is currently discussing on more radical modes of resuming the connections in TLS 1.3 namely the "1-roundtrip" and "0-roundtrip" modes. There seems to be a strong commitment within the working group to include the 0-roundtrip handshake for TLS session resumption partly because DTLS is an integral part of security of constrained environments. Interestingly, we currently estimate that the 1-roundtrip mode would not save the number of bits if compared to TLS 1.2 resumption. It would still be roughly 60% less bits if compared to full handshake. But the 1-roundtrip mode is still interesting because it reduces the latency. Note that the 0-roundtrip may not mean that all of the TLS handshake messages would be omitted. It means that the client can start sending application data directly, and the server may still reply with some TLS resume messages (Figure B.1.4-1). 

Client                                                Server

ClientHello

ClientKeyShare

{Certificate*}

{CertificateVerify*}

{Finished}

[Application Data]            -------->

                                                  ServerHello

                                               ServerKeyShare

                              <--------            {Finished}

[Application Data]            <------->    [Application Data]

Figure B.1.4-1: Overview of 0-RTT Flow 

The 0-roundtrip functionality may be limited to certain use cases only, and could be used only if both the client and the server agree to use it. There is going to be new key derivation procedure for the TLS master shared secret when the session is resumed. One of the current problems is related to the TLS anti-replay feature that is based on the idea that each side provides a random value that is mixed into the keying material. The anti-reply can be achieved for the 0-roundtrip client but not to the server. It is currently discussed how this can be solved, e.g. if the server should simply drop the 0-roundtrip data when the server thinks the 0-roundtrip is not possible. The server needs to tell the client that this was done for the client application to retransmit. However, the 0-roundtrip is seen as a feature for limited cases where the application domains can safely keep state, and can profile the use of TLS.
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