3GPP TSG-SA WG3 Meeting #80
S3-152071
Tallinn, Estonia, 24 – 28 August 2015

revision of S3-151892
Source:
Ericsson, Huawei, TeliaSonera
Title:
A solution proposal on EASE_IoT algorithms
Document for:
Discussion and decision
Agenda Item:
8.7.1
Work Item / Release:
CIoT/EASE_IoT/Rel-13
Abstract of the contribution: This contribution proposes that 3G cellular algorithms are re-used in EASE_IoT. It is proposed that SA3 sends LS on how the algorithms should be specified to ETSI SAGE. The algorithms are not new, however, the way of applying them to GPRS context should be discussed in ETSI SAGE.
1 Introduction
In 33.860 [1], solution #6.1 is proposing of adding integrity protection between UE and SGSN. This essentially means that new type of algorithms need to specified for eGPRS. In 3G and LTE, the algorithms are typically specified as a pair of encryption and integrity algorithm. If the same algorithm core is used for different accesses (e.g. UEA2/UIA2 vs EEA1/EIA1), the algorithm is renamed because the way the algorithm is bind to the underlying protocol is different.
In this contribution we propose a way to re-name 3G and LTE algorithms for EASE_IoT, and demonstrate a way to bind those algorithms to GPRS context. We also propose which algorithms should be specified for EASE_IoT. The proposal is suggested to be added to TR 33.860 as a new solution proposal.
All cellular algorithms are specified by ETSI SAGE. It is proposed to involve ETSI SAGE, and ask their feedback on the way the existing algorithms should be applied.
2 Proposal
GPRS currently includes only encryption algorithms GEA0, GEA2, GEA3 and GEA4. In 33.860 [1], solution #6.1 is proposing of adding integrity protection to enhanced GPRS supporting Cellular IoT. This means that new algorithms need to be specified.
Several requirements that influence the choice of algorithms have already been discussed:

· Long deployment cycle: the UEs are assumed to be out in the field for ten years [2].

· Battery efficiency: there is a need for minimizing the signalling load, and consequently the re-use of security association between UE and SGSN is needed for longer time than normally [1, section 5.1.1].

· UE can enforce strong security, and refuse from connecting to the network if strong algorithms are not available (i.e. there is no requirement for backwards compatibility from UE side) [1, section 5.2.1].

Table 1 is showing current choice of algorithms. Reusing some of the 3G or LTE algorithms seem as the most promising approach ahead. This is not only because they are already specified, and deployed, but also because they all use 128-bit keys.
	Algorithm
	GPRS
	3G
	LTE

	Null
	GEA0
	
	EEA0/EIA0

	
	GEA2
	
	

	Kasumi 64
	GEA3
	
	

	Kasumi 128
	GEA4
	UEA1/UIA1
	

	SNOW 3G
	
	UEA2/UIA2
	EEA1/EIA1

	AES
	
	
	EEA2/EIA2

	ZUC
	
	
	EEA3/EIA3

Table 1: Available cellular algorithms

It has been proposed that UIA1 should be chosen because it provides implementation synergies with GEA4 as they are both based on Kasumi. However, specifying only one integrity protection algorithm is not enough because if that one is broken some day in the future, there would be no back-up. In other words, the second integrity protection algorithm needs to be specified.
We think that choosing UIA1 is a good decision. A natural candidate for the second integrity algorithm is SNOW 3G (UIA2) because it has been specified using the same protocol wrapper as UIA1. More importantly, SNOW 3G is structurally more different from KASUMI than AES, and hence provides better diversity of algorithms. We propose that UIA2 would be the second integrity algorithm for EASE_IoT.
If the SNOW 3G is implemented as the second integrity algorithm, the SNOW 3G encryption algorithm becomes also attractive from EASE_IoT point of view. In other words, UEA2 becomes a candidate as the second encryption algorithm that uses 128 bits long keys. We propose that if UIA2 is chosen as the second integrity algorithm for EASE_IoT, UEA2 is added on the same go as the second encryption algorithm.
Finally, the null encryption algorithm GEA0 is needed in some countries, and need to be added for that reason.
Table 2 demonstrates the proposed cellular algorithms for EASE_IoT. It is proposed that algorithms are renamed using the naming principle used in Table 2. This means that if UIA1 is applied to EASE_IoT, it is renamed to GIA4 in order to highlight the fact that the way algorithm is bind to the protocol layer is different in GPRS and 3G. The exact way to using the 3G algorithms in EASE_IoT is a matter of ETSI SAGE.
	Algorithm
	GPRS
	EASE_IoT
	3G
	LTE

	Null
	GEA0
	GEA0
	
	EEA0/EIA0

	
	GEA2
	
	
	

	Kasumi 64
	GEA3
	
	
	

	Kasumi 128
	GEA4
	GEA4/GIA4
	UEA1/UIA1
	

	SNOW 3G
	
	GEA5/GIA5
	UEA2/UIA2
	EEA1/EIA1

	AES
	
	
	
	EEA2/EIA2

	ZUC
	
	
	
	EEA3/EIA3

Table 2: Proposed algorithms for Cellular IoT

The attached pCR adds the content of Table 2 to 33.860 as a proposed solution on algorithms for EASE_IoT. The pCR demonstrates how the algorithms would be bind to GPRS protocol; however, the final design would need to be done in ETSI SAGE.

It is proposed that

· SA3 sends an LS to ETSI SAGE on enhanced GPRS security algorithms.

· The attached pCR is added to the TR to record the progress of the work. The exact content of the algorithms can be modified later based on the LS response from ETSI SAGE.

· SA3 agrees on the assumption that if the Gb interface is enhanced by integrity protection, two integrity algorithms would need to be specified.

· SA3 agrees on the assumption that if the Gb interface is enhanced by stronger encryption, two encryption algorithms with 128 bit long keys would need to be specified.

3 References
[1] 3GPP TR 33.860 “Study on EGPRS Access Security Enhancements with relation to cellular IoT”
[2] 3GPP TR 45.820: “Cellular System Support for Ultra Low Complexity and Low Throughput Internet of Things”

4 pCR

BEGIN CHANGES

5
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TR 45.820: “Cellular System Support for Ultra Low Complexity and Low Throughput Internet of Things”.
[3]
3GPP TR 23.060: "General Packet Radio Service (GPRS)".
[x]
3GPP TS 43.020: "Security related network functions"
[y]
3GPP TS 35.215: "Confidentiality and Integrity Algorithms UEA2 & UIA2; Document 1: UEA2 and UIA2 specifications"

[z]
3GPP TS 35.201: " Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 1: f8 and f9 Specification "

END OF CHANGES

BEGIN CHANGES

6.X
Solution X: Algorithms for ciphering and integrity protection
6.x.1
General

This solution addresses key issues related to eavesdropping and unauthorized modification of signalling data. It is proposed that the following algorithms are specified for EASE_IoT:
· GEA0 for null-encryption

· GEA4/GIA4 based on Kasumi 128

· GEA5/GIA5 based on SNOW 3G
Editor’s note: It is FFS whether the support of ZUC is required, and whether as a result the GEA0 can be removed.

Editor’s note: This solution is related to the solution proposal in section 6.1. It proposes that Gb interface should be enhanced by two sets of encryption/integrity algorithms with 128 bit key lengths. Exactly which algorithms are chosen are FFS.
6.x.2
Null ciphering algorithm

The GEA0 algorithm is implemented such that it has the same effect as if it generates a keystream of all zeros. The encryption/decryption is done by using a bit per bit binary addition of the plaintext/ciphertext and the keystream.
NOTE 1: GEA0 provide no security.

6.x.3
Ciphering algorithm

6.x.3.1
 Inputs and outputs

The input parameters to the ciphering algorithm GEA4 are as specified in TS 43.020 [x]. Figure 6.x.3.1-1 illustrates the use of the ciphering algorithm GEA4.

[image: image1.emf]GEA4

Ciphering Key

Ktc

INPUT

DIRECTION

Unciphered

Frame

Deciphered

Frame

Ciphered

Frame

ME or eSGSN

Output

eSGSN or ME

GEA4

Ciphering Key

Ktc

INPUT

DIRECTION

Output

Figure 6.x.3.1-1: Ciphering of data with GEA4

The input parameters to the ciphering algorithm GEA5 are a 128-bit cipher key named Ktc, a 32-bit INPUT as specified in TS 43.020 [x], a 5-bit bearer identity BEARER with a static value “00000”, the 1-bit direction of the transmission i.e. DIRECTION, and the length of the keystream required i.e. LENGTH. The DIRECTION bit shall be 0 for uplink and 1 for downlink.

Figure 6.x.3.1-2 illustrates the use of the ciphering algorithm GEA5 to encrypt plaintext by applying a keystream using a bit per bit binary addition of the plaintext and the keystream. The plaintext may be recovered by generating the same keystream using the same input parameters and applying a bit per bit binary addition with the ciphertext.

[image: image2.emf]GEA5

Ciphering Key

Ktc

INPUT DIRECTION

Unciphered

Frame

Deciphered

Frame

Ciphered

Frame

ME or eSGSN

Output

eSGSN or ME

LENGTH

BEARER

GEA5

Ciphering Key

Ktc

INPUT

DIRECTION

Output

LENGTH

BEARER

Figure 6.x.3.1-2: Ciphering of data with GEA5
Based on the input parameters the algorithm generates the output keystream block KEYSTREAM which is used to encrypt the input plaintext block PLAINTEXT to produce the output ciphertext block CIPHERTEXT.
The input parameter LENGTH shall affect only the length of the KEYSTREAM BLOCK, not the actual bits in it.
6.x.3.2
 GEA5

NOTE: This section is presented here only for demonstrative purposes, and represents only one possible way of specifying the GEA5 algorithm. The actual specification would need to be done in ETSI SAGE.
GEA5 is based on SNOW 3G and is identical to UEA2 as specified in TS 35.215 [y] with the following exceptions to the initialization of the algorithm (differences being that COUNT-C[0], … COUNT-C[31] shall be replaced by INPUT[0], … INPUT[31], and that BEARER[0] … BEARER[4] shall be replaced by 0 || 0 || 0 || 0 || 0)::
IV3 = INPUT[0] || INPUT [1] || INPUT [2] || … || INPUT [31]

IV2 = 0 || 0 || 0 || 0 || 0 || DIRECTION[0] || 0 || … || 0

IV1 = INPUT[0] || INPUT [1] || INPUT [2] || … || INPUT [31]

IV0 = 0 || 0 || 0 || 0 || 0 || DIRECTION[0] || 0 || … || 0

6.x.4
Integrity algorithm

6.x.4.1
 Inputs and outputs

The input parameters to the integrity algorithm are a 128-bit integrity key named Kti, a 32-bit INPUT, a 5-bit bearer identity called BEARER with a static value “00000”, the 1-bit direction of the transmission i.e. DIRECTION, and the message itself i.e MESSAGE. The DIRECTION bit shall be 0 for uplink and 1 for downlink. The bit length of the MESSAGE is LENGTH.

Figure 6.x.4.1-1 illustrates the use of the integrity algorithm GIA to authenticate the integrity of messages.

[image: image3.emf]GIA

Integrity Key

Kti

INPUT

DIRECTION

Sender

BEARER

MAC

MESSAGE

GIA

Integrity Key

Kti

INPUT

DIRECTION

Receiver

BEARER

XMAC

MESSAGE

Figure 6.x.4.1-1: Derivation of MAC/XMAC

Based on these input parameters the sender computes a 32-bit message authentication code (MAC) using the integrity algorithm GIA. The message authentication code is then appended to the message when sent. For integrity protection algorithms the receiver computes the expected message authentication code (XMAC) on the message received in the same way as the sender computed its message authentication code on the message sent and verifies the data integrity of the message by comparing it to the received message authentication code, i.e. MAC.

6.x.4.2
GIA4

NOTE: This section is presented here only for demonstrative purposes, and represents only one possible way of specifying the GIA4 algorithm. The actual specification would need to be done in ETSI SAGE.

GIA4 is based on Kasumi 3G and is implemented in the same way as UIA1 as specified TS 35.201 [z] with the following exceptions to the initialization of the algorithm (differences being that COUNT-C[0], … COUNT-C[31] shall be replaced by INPUT[0], … INPUT[31], and that BEARER[0] … BEARER[4] shall be replaced by 0 || 0 || 0 || 0 || 0):

We concatenate INPUT, INPUT, MESSAGE and DIRECTION. We then append a single "1" bit, followed by between 0 and 63 "0" bits so that the total length of the resulting string PS (padded string) is an integral multiple of 64 bits, i.e.:

PS = INPUT[0]…INPUT[31] INPUT[0]…INPUT[31] MESSAGE[0]…MESSAGE[LENGTH-1] DIRECTION[0] 1 0*

Where 0* indicates between 0 and 63 "0" bits.

6.x.4.3
GIA5

NOTE: This section is presented here only for demonstrative purposes, and represents only one possible way of specifying the GIA5 algorithm. The actual specification would need to be done in ETSI SAGE.

GIA5 is based on SNOW 3G and is identical to UIA2 as specified in TS 35.215 [y] with the following exceptions to the initialization of the algorithm (differences being that COUNT-C[0], … COUNT-C[31] shall be replaced by INPUT[0], … INPUT[31], and that BEARER[0] … BEARER[4] shall be replaced by 0 || 0 || 0 || 0 || 0):

IV3 = INPUT[0] || INPUT [1] || INPUT [2] || … || INPUT [31]

IV2 = 0 || 0 || 0 || 0 || 0 || DIRECTION[0] || 0 || … || 0

IV1 = INPUT[0] || INPUT [1] || INPUT [2] || … || INPUT [31]

IV0 = 0 || 0 || 0 || 0 || 0 || DIRECTION[0] || 0 || … || 0

END OF CHANGES

GEA5
Ciphering Key
Ktc
INPUT
DIRECTION
Unciphered Frame
Deciphered Frame
Ciphered Frame
ME or eSGSN

Output
eSGSN or ME
LENGTH
BEARER
GEA5
Ciphering Key
Ktc
INPUT
DIRECTION

Output
LENGTH
BEARER

GIA
Integrity Key
Kti
INPUT
DIRECTION
Sender

BEARER

MAC

MESSAGE

GIA
Integrity Key
Kti
INPUT
DIRECTION
Receiver

BEARER

XMAC

MESSAGE

GEA4
Ciphering Key
Ktc
INPUT
DIRECTION
Unciphered Frame
Deciphered Frame
Ciphered Frame
ME or eSGSN

Output
eSGSN or ME
GEA4
Ciphering Key
Ktc
INPUT
DIRECTION

Output

