
3GPP TSG-RAN WG2 #99bis R2-1710989
Prague, Czech Republic, 09 - 13 Oct 2017

Source:
MediaTek Inc.
Title:
Discussion on Byte-alignment Operation for UDC
Agenda Item:
9.16
Document for:
Discussion and Decision
1. Introduction
In RAN Plenary #77, UDC WI is agreed with DEFLATE compression method as working assumption [1]. In UDC WID, it is stated that DEFLATE-based UDC can support byte-alignment operation, and possible zero-padding options are listed. In this document, we analyze the possible options by considering implementation complexity. Based on our analysis, we recommend to adopt “sync flush” (RFC 1979) [2] option for byte-alignment.
2. Discussion
2.1. Available byte-alignment methods
DEFLATE compression data format [3] can support byte-alignment operation though it is not mandated in the original RFC document. The general idea supporting byte-wise transmission is by zero-padding. Some byte-alignment options (so-called “flush operations”) are already proposed in RFCs. And, Z_FINISH and Z_SYNC_FLUSH are implemented in public-domain DEFLATE source code [4].
Observation 1: DEFLATE essentially has two flush operations, Z_FINISH and Z_SYNC_FLUSH, to accomplish byte-alignment by zero-padding.

· Z_FINISH for byte-alignment
The idea of Z_FINISH is to perform zero-padding directly in the back as the end of a bit stream. By the natural of Z_FINISH, the Deflate instance, DEFLATE compressor, is reset and shall reload the compression memory for every packet.
· Z_SYNC_FLUSH for byte-alignment
Z_SYNC_FLUSH, suggested by RFC 1979 [2], performs zero-padding operation by adding a non-compressed zero-length DEFLATE block in the back of the output result. Note that, the non-compressed block is designed for byte-alignment in DEFLATE standard. After adding the zero-length bock, Deflate instance can reside and wait for upcoming packets. Accordingly, the compression memory can be managed directly by Deflate in its history buffer.
In RFC 1979, it is specifically stated that the tail 4 bytes of the zero-length block is removed before transmission. In the decompressor side, the removed bytes will be added back before decompression operation. The objective is to improve compression efficiency (since both sides knows that it is a zero-length block, the 4 tail bytes are totally redundant for transmission). The relevant RFC texts [2] are listed as followings:
The basic format of the compressed data is precisely described by the 'Deflate' Compressed Data Format Specification. Each transmitted packet must begin at a 'deflate' block boundary, to ensure synchronization when incompressible data resets the transmitter's state; to ensure this, each transmitted packet must be terminated with a zero-length 'deflate' non-compressed block (BTYPE of 00). This means that the last four bytes of the compressed format must be 0x00 0x00 0xFF 0xFF. These bytes MUST be removed before transmission; the receiver can reinsert them if required by the implementation.
The details of the byte-alignment run-time procedures for the two methods are further discussed in Appendix A.
2.2. Comparison of the byte-alignment methods
We think both byte-alignment methods can work by using available open-domain source codes as long as the same method is applied both UE (compressor) and eNB (decompressor).
Observation 2: UE and eNB must adopt the same byte-alignment method.
DEFLATE using Z_FINISH as byte-alignment operation needs to reset the compression/decompression instance in UE/eNB side whenever UDC finalize the processing of one packet. For such operation, the main implementation issues are:

· Compressor/decompressor need more MIPS for the extra reset/reload operations.

· Compressor/decompressor needs to maintain an external compression memory so that the compression memory can be reloaded after resetting UDC instance.
On the other hand, those overheads are unnecessary for DEFLATE adopting Z_SYNC_FLUSH as the byte-alignment operation. The reason is that, zero-padding is treated as an ordinary DEFLATE block in the compression process; i.e., UDC instance is not finished after one packet process. Therefore, we suggest to adopt Z_SYNC_FLUSH as the byte-alignment option for DEFLATE-based UDC.
Proposal 1: Specify Z_SYNC_FLUSH as the DEFLATE byte-alignment option with corresponding reference, RFC 1979 in R2 spec.

3. Conclusion
In the document, we analyze two valid byte-alignment methods for DEFLATE-based UDC. Z_Finish and Z_SYNC_FLUSH are both available in public-domain open source code. To simplify computation complexity, we suggest to adopt Z_SYNC_FLUSH method in both compressor and decompressor.
Observation 1: DEFLATE essentially has two flush operations, Z_FINISH and Z_SYNC_FLUSH, to accomplish byte-alignment by zero-padding.

Observation 2: UE and eNB must adopt the same byte-alignment method.
Proposal 1: Specify Z_SYNC_FLUSH as the DEFLATE byte-alignment option with corresponding reference, RFC 1979 in R2 spec.

We are happy to provide CR if our proposals are agreed.
4. Reference
[1] RP-172076, New WID on UL data compression in LTE, CATT, CMCC
[2] RFC1979, PPP Deflate Protocol

[3] RFC1951, DEFLATE Compressed Data Format Specification version 1.3
[4] Zlib library source codes, https://zlib.net/
5. Appendix:
5.1. Detail procedure flow of Z_Finish method
UE-side compression operations are divided into two parts as detailed below. The first part contains possible operations when UDC is configured, and the other part represents operations whenever a packet arrives in a UDC-configured bearer.

A. UDC initialization as configured by RRC message
1. Set predefined dictionary into compression memory

B. Every time a packet arrives

1. Initialize Deflate instance

2. Set compression memory into Deflate history buffer

3. Compress the packet with Z_FINISH for zero-padding

4. Output compressed packet

5. Update compression memory

6. Terminate Deflate instance (note: going back to B.1 whenever a new packet arrivals)
The UDC building blocks and compression flow for Z_FINISH byte-alignment operation in UE side are also shown in Figure 1.

Due to the symmetry of compression and decompression operations, eNB-side operations are almost the same as UE side, except that eNB use Inflate instance, DEFLATE decompressor, and that eNB inputs a compressed packet to obtain the originally uncompressed content. Figure 2 shows the decompression flow of this option in eNB side.

[image: image8.png]lS

Packet

os]
w

Predefined
dictionary

B.2 Compression
Memory

B.1

B.5

Compressed
Packet

Fig 1. UDC UE-side compressor flow by adopting Z_FINISH byte-alignment operation.

[image: image2]
Fig 2. UDC eNB-side decompressor flow by adopting Z_FINISH byte-alignment operation.

5.2. Detail procedure flow of Z_Sync_Flush
By adopting Z_SYNC_FLUSH as described in RFC 1979, UE side operations are also divided into two parts as detailed below.

A. UDC initialization as configured by RRC message

1. Initialize Deflate instance

2. Set predefined dictionary into Dedlate history buffer

B. Every time a packet arrives

1. Compress the packet with Z_SYNC_FLUSH for zero-padding

2. Output compressed block (including tail bytes)

3. Eliminate tail bytes (0x00 0x00 0xFF 0xFF) for transmission

Figure 3 also shows the UDC compression flow of this method in UE side.

[image: image3]
Fig 3. UDC UE-side compressor flow by adopting RFC 1979 Z_SYNC_FLUSH byte-alignment operation.

The eNB side operations are detailed as follows.

A. RRC configures UDC

1. Initialize Inflate instance

2. Set predefined dictionary into Inflate history buffer

B. Every time a compressed packet arrives

1. Add tail bytes (0x00 0x00 0xFF 0xFF) for decompression

2. Decompress the compressed block with Z_SYNC_FLUSH

3. Output the original packet

The decompression flow of eNB side is shown in Figure 4.

[image: image4]
Fig 4. UDC eNB-side decompressor flow by adopting RFC 1979 Z_SYNC_FLUSH byte-alignment operation.
PAGE
5
R2-17xxxxx

[image: image1][image: image5.png]Compressed

B.1

Packet

-

L 2

Compressed

A2 Predefined
dictionary

Al

B.2

Block

-

Inflate

History
Buffer

B.3

i Packet ;

[image: image6.png]Packet

A2 Predefined
dictionary

Al

B.1

-

Deflate

History
Buffer

B.2

Compressed
Block

B.3

Compressed
Packet

[image: image7.png]Compressed
Packet

®
w

-~ lS

Predefined
dictionary

B.2 Compression
Memory

B.1

B.5

: Packet ;

