[bookmark: _Ref452454252]3GPP TSG-RAN WG2 #99bis	R2-1710821
Prague, Czech Republic, 9 - 13 October 2017	

Agenda item:	10.3.2.5
Source:	Nokia, Nokia Shanghai Bell
Title:	Segmentation based gap detection for AM operation
WID/SID:	NR_newRAT-Core - Release 15
Document for:	Discussion and Decision
1	Introduction
With SO based segmentation, segmentation based gap detection was captured in the TP for UM operation as outcome of the email discussion [1]. We believe the same should be applicable for AM operation as well, so that the timer is started when a gap is created and stopped when the gap is filled by a segment, to avoid too early report of not transmitted segments and too early discard of still ongoing segments as discussed in [2] [3].
2	Discussion
Similar TP for UM should be adopted for AM as well.
Proposal 1: align the variable names for AM with UM:
· change RX_Next_Highest_Rcvd to RX_Next_Highest;
· change t-Reorderring to t-Reassembly.
Propsoal 2: introduce segment based gap detection for AM as done for UM.
Proposal 3: ACK_SN in the status report only ACK the SNs < ACK_SN (except for those not NACKed), i.e. the SN with ACK_SN cannot be ACKed, as RX_Next_Highest which is used for RX_Next_Status_Trigger then used for ACK_SN is set to the value of the SN following the SN of the RLC SDU with the highest SN among received RLC SDUs, even though the last one was not fully received.
Proposal 4: agree the TP below for AM operation.

[bookmark: _Toc477961571][bookmark: _Toc484620851][bookmark: _Toc488395816]5.1.3.2	Receive operations
[bookmark: _Toc477961572][bookmark: _Toc484620852][bookmark: _Toc488395817]5.1.3.2.1	General
The receiving side of an AM RLC entity shall maintain a receiving window according to the state variable RX_Next as follows:
-	a SN falls within the receiving window if RX_Next <= SN < RX_Next + AM_Window_Size;
-	a SN falls outside of the receiving window otherwise.
When receiving an AMD PDU from lower layer, the receiving side of an AM RLC entity shall:
-	either discard the received AMD PDU or place it in the reception buffer (see sub clause 5.1.3.2.2);
-	if the received AMD PDU was placed in the reception buffer:
-	update state variables, reassemble and deliver RLC SDUs to upper layer and start/stop t-Reordering as needed (see sub clause 5.1.3.2.3).
When t-Reassembly Reordering expires, the receiving side of an AM RLC entity shall:
-	update state variables and start t-Reassembly Reordering as needed (see sub clause 5.1.3.2.4).
Editor’s note: Will be updated if naming for t-Reordering is changed.
[bookmark: _Toc477961573][bookmark: _Toc484620853][bookmark: _Toc488395818]5.1.3.2.2	Actions when an AMD PDU is received from lower layer
When an AMD PDU is received from lower layer, where the AMD PDU contains byte segment numbers y to z of a RLC SDU with SN = x, the receiving side of an AM RLC entity shall:
-	if x falls outside of the receiving window; or
-	if byte segment numbers y to z of the RLC SDU with SN = x have been received before:
-	discard the received AMD PDU;
-	else:
-	place the received AMD PDU in the reception buffer;
-	if some byte segments of the RLC SDU contained in the AMD PDU have been received before:
-	discard the duplicate byte segments.
[bookmark: _Toc477961574][bookmark: _Toc484620854][bookmark: _Toc488395819]5.1.3.2.3	Actions when an AMD PDU is placed in the reception buffer
When an AMD PDU with SN = x is placed in the reception buffer, the receiving side of an AM RLC entity shall:
-	if x >= RX_Next_Highest_Rcvd
-	update RX_Next_Highest_Rcvd to x+ 1;
-	if all bytes of the RLC SDU with SN = x are received:
-	reassemble the RLC SDU from AMD PDU(s) with SN = x, remove RLC headers when doing so and deliver the reassembled RLC SDU to upper layer;
-	if x = RX_Highest_Status,
-	update RX_Highest_Status to the SN of the first RLC SDU with SN > current RX_Highest_Status for which not all bytes have been received;
-	if x = RX_Next:
-	update RX_Next to the SN of the first RLC SDU with SN > current RX_Next for which not all bytes have been received;
-	if t-Reassembly Reordering is running:
-	if RX_Next_Status_Trigger = RX_Next +1 and there is no missing byte segment of the SDU associated with SN = RX_Next before the last byte of all received segments of this SDU; or
-	if RX_Next_Status_Trigger falls outside of the receiving window and RX_Next_Status_Trigger is not equal to RX_Next + AM_Window_Size:
-	stop and reset t-ReorderingReassembly;
-	if t-Reassembly Reordering is not running (includes the case t-Reassembly Reordering is stopped due to actions above):
-	if RX_Next_Highest_Rcvd > RX_Next + 1; or
-	if RX_Next_Highest = RX_Next + 1 and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU:
-	start t-ReassemblyReordering;
-	set RX_Next_Status_Trigger to RX_Next_Highest_Rcvd.
[bookmark: _Toc477961575][bookmark: _Toc484620855][bookmark: _Toc488395820]5.1.3.2.4	Actions when t-Reordering expires
When t-Reassembly Reordering expires, the receiving side of an AM RLC entity shall:
-	update RX_Highest_Status to the SN of the first RLC SDU with SN >= RX_Next_Status_Trigger for which not all bytes have been received;
-	if RX_Next_Highest_Rcvd > RX_Highest_Status; or
-	if RX_Next_Highest = RX_Highest_Status + 1 and there is at least one missing byte segment of the SDU associated with SN = RX_Highest_Status before the last byte of all received segments of this SDU:
-	start t-ReassemblyReordering;
[bookmark: _GoBack]-	set RX_Next_Status_Trigger to RX_Next_Highest_Rcvd.

6.2.2.10	Acknowledgement SN (ACK_SN) field
Length: 12 bits or 18 bits (configurable).
The ACK_SN field indicates the SN of the next not received RLC SDU which is not reported as missing in the STATUS PDU. When the transmitting side of an AM RLC entity receives a STATUS PDU, it interprets that all RLC SDUs up to but not including the RLC SDU with SN = < ACK_SN have been received by its peer AM RLC entity, excluding those RLC SDUs indicated in the STATUS PDU with NACK_SN, portions of RLC SDUs indicated in the STATUS PDU with NACK_SN, SOstart and SOend, RLC SDUs indicated in the STATUS PDU with NACK_SN and NACK_range, and portions of RLC SDUs indicated in the STATUS PDU with NACK_SN, NACK range, SOstart and SOend.

[bookmark: _Toc454281578][bookmark: _Toc488395862]7.1	State variables
This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.
All state variables and all counters are non-negative integers.
All state variables related to AM data transfer can take values from 0 to 4095 for 12 bit SN or from 0 to 262143 for 18 bit SN. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 4096 for 12 bit SN and 262144 for 18 bit SN).
Editor’s note: Details for RLC UM related state variables is FFS.
The transmitting side of each AM RLC entity shall maintain the following state variables:
a) TX_Next_Ack – Acknowledgement state variable
This state variable holds the value of the SN of the next RLC SDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window. It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an RLC SDU with SN = TX_Next_Ack.
b) TX_Next – Send state variable
This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU. It is initially set to 0, and is updated whenever the AM RLC entity delivers an AMD PDU with SN = TX_Next.
c) POLL_SN – Poll send state variable
This state variable holds the value of TX_Next -1 upon the most recent transmission of an AMD PDU with the poll bit set to “1”. It is initially set to 0.

The receiving side of each AM RLC entity shall maintain the following state variables:
a) RX_Next – Receive state variable
This state variable holds the value of the SN following the last in-sequence completely received RLC SDU, and it serves as the lower edge of the receiving window. It is initially set to 0, and is updated whenever the AM RLC entity receives an RLC SDU with SN = RX_Next.
b) RX_Next_Status_Trigger – t-Reordering Reassembly state variable
This state variable holds the value of the SN following the SN of the RLC SDU which triggered t-ReorderingReassembly.
c) RX_Highest_Status – Maximum STATUS transmit state variable
This state variable holds the highest possible value of the SN which can be indicated by “ACK_SN” when a STATUS PDU needs to be constructed. It is initially set to 0.
d) RX_Next_Highest_Rcvd – Highest received state variable
This state variable holds the value of the SN following the SN of the RLC SDU with the highest SN among received RLC SDUs. It is initially set to 0.

4	Conclusions
Segmentation implications to RLC status reporting are discussed in this contribution with following proposals proposed:
Proposal 1: align the variable names for AM with UM:
· change RX_Next_Highest_Rcvd to RX_Next_Highest;
· change t-Reorderring to t-Reassembly.
Propsoal 2: introduce segment based gap detection for AM as done for UM.
Proposal 3: ACK_SN in the status report only ACK the SNs < ACK_SN (except for those not NACKed), as RX_Next_Highest which is used for RX_Next_Status_Trigger then used for ACK_SN is set to the value of the SN following the SN of the RLC SDU with the highest SN among received RLC SDUs, even though the last one was not fully received, i.e. the SN with ACK_SN cannot be ACKed.
Proposal 4: agree the TP below for AM operation.
References
[1] R2-17xxxxx, UM email discussion, Qualcomm
[2] R2-1705219, Segmentation implications to RLC status reporting, Nokia, Alcatel-Lucent Shanghai Bell
[3] R2-1706377, NR RLC AM operation on VR(H) and status reporting, CATT
