
3GPP TSG-RAN WG2 #99 R2-1708358
Berlin, Germany, 21 - 25 Aug 2017		

Source:	CATT
[bookmark: Title]Title:	More Details and Simulation Results of Deflate with 1 Byte UDC Header
[bookmark: Source]Agenda Item:	9.3
[bookmark: DocumentFor]Document for:	Discussion and Decision

Introduction
In past RAN2 meetings, Deflate and APDC were proposed to be the candidates of UDC solution. In [1], it is proved that Deflate can achieve similar compression efficiency as APDC.
This contribution provides more details of Deflate solution and simulation results considering more various setup of Deflate.
Discussion
2.1 More detailed informations for deflate solution
UDC header
Although we think how to define the UDC header can be discussed in WI phase, here an example of the UDC header format is given for helping others to understand how it works.
Figure-1 shows an example format of the 1 byte UDC header. After UDC processing, the data block could be compressed as an UDC block.
[image:]
Figure-1: an example of 1 byte UDC header
Where these fields can be potentially defined as:
· F0 bit is used to indicate whether this packet is processed by UDC entity or not, i.e. “1” means this packet is processed by UDC and the content following this 1byte header is a UDC block.
· F1 bit indicates whether the current uncompressed packet is put into compression buffer, i.e. “1” means the payload of the current packet is put into compression buffer, which can inform eNB to put this packet into buffer located in eNB side as well after packet de-compression.
· F2 bit indicates the reset of the compression buffer. When asynchronization or error occurs between compression buffer and de-compression buffer, UE needs to reset the compression buffer and inform eNB to reset the de-compression buffer, i.e. clearing the content in the compression buffer (all bits are 0) and set the F2 bit to “1”.
· F3 bit indicates whether the pre-defined dictionary is used or not. If pre-defined dictionary is used, UE needs to put the pre-defined dictionary into compression buffer before compressing the first packet, and set F3 bit to “1”.
· Checksum, which is used to validate the compression buffer, is calculated by the content of current compression buffer. The calculation algorithm could be similar as the popular method, such as CRC, and calculation result is truncated the into 4 bits checksum value. Note that checksum calculation can be done after the current packet transmission or before the next packet processing, so this part could be considered no effect on the compression complexity since it would not increase the processing delay.

Checksum failure
Figure-2 shows the basic behavior when checksum failure occurs.
For network side, eNB could inform UE the checksum failure by RRC Reconfiguration message, which includes the checksum failure indication and the packet PDCP SN (or COUNT), and discard the following packets until the eNB receives a packet from UE, in which the F2 bit is set to “1”. After receiving this packet, eNB should reset the de-compression buffer, and accept the following packets.
For UE, it should reset the compression buffer as soon as receiving the checksum failure indication included in the RRC Reconfiguration message. According to the PDCP SN (or COUNT) indicated in RRC message, UE should re-transmit the packets from this PDCP SN (or COUNT), and set the F2 bit in this packet to “1”.

Figure-2 Checksum failure behavior flow
2.2 Results considering header overhead
This part provides the simulation results of Deflate with 1 byte UDC header.
With the 1 byte UDC header, the simulation results of Deflate are updated as in the table below:
Table-1 Simulation results with RFC 1951 (with 1 byte UDC header)
	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency

	Input traffic 1: FTP data-client-CMCC
	1211
	606
	49.96%
	1211
	606
	49.96%

	Input traffic 2: FTP data-server-CMCC
	1782
	987
	44.61%
	1782
	987
	44.61%

	Input traffic 3: SIP signalling-CMCC UE 1
	51020
	6700
	86.87%
	51020
	6058
	88.13%

	Input traffic 4: SIP signalling-CMCC
	32680
	4958
	84.83%
	32680
	4828
	85.23%

	Input traffic 5: SIP signalling-CMCC
	46688
	5976
	87.20%
	46688
	5362
	88.52%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	13450
	4717
	64.93%
	13450
	4718
	64.92%

	Input traffic 7: Web surfing-CMCC
	2381720
	804504
	66.22%
	2381720
	707847
	70.28%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	1371861
	385106
	71.93%
	1371861
	357120
	73.97%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	2453749
	996099
	59.41%
	2453749
	1028979
	58.07%

	Input traffic 10: Long period ftp-MTK
	879630
	334174
	62.01%
	879630
	364504
	58.56%

	Input traffic 11: Multiple IP flows-QC
	5319100
	1485336
	72.08%
	5319100
	1387183
	73.92%

	Input traffic 7+8:average mixed
	3753581
	1258662
	66.47%
	3753581
	1109788
	70.43%

	Input traffic 7+8:one inserted in another one
	3753581
	1189297
	68.32%
	3753581
	1064458
	71.64%

	Input traffic 7+8:random mixed
	3753581
	1258376
	66.48%
	3753581
	1105261
	70.55%

Table-2 Performance comparison of with/without UDC header
	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Compression efficiency
	loss
	Compression efficiency
	loss

	
	Without*
	With
	
	Without*
	With
	

	Input traffic 1: FTP data-client-CMCC
	51.69%
	49.96%
	1.73%
	51.69%
	49.96%
	1.73%

	Input traffic 2: FTP data-server-CMCC
	46.02%
	44.61%
	1.41%
	46.02%
	44.61%
	1.41%

	Input traffic 3: SIP signalling-CMCC UE 1
	86.99%
	86.87%
	0.12%
	88.25%
	88.13%
	0.12%

	Input traffic 4: SIP signalling-CMCC
	84.94%
	84.83%
	0.11%
	85.34%
	85.23%
	0.11%

	Input traffic 5: SIP signalling-CMCC
	87.31%
	87.20%
	0.11%
	88.62%
	88.52%
	0.10%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	65.56%
	64.93%
	0.63%
	65.55%
	64.92%
	0.63%

	Input traffic 7: Web surfing-CMCC
	66.99%
	66.22%
	0.77%
	71.04%
	70.28%
	0.76%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	73.37%
	71.93%
	1.44%
	75.41%
	73.97%
	1.44%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	61.26%
	59.41%
	1.85%
	59.92%
	58.07%
	1.85%

	Input traffic 10: Long period ftp-MTK
	63.91%
	62.01%
	1.90%
	60.46%
	58.56%
	1.90%

	Input traffic 11: Multiple IP flows-QC
	73.03%
	72.08%
	0.95%
	74.87%
	73.92%
	0.95%

	Input traffic 7+8:average mixed
	67.48%
	66.47%
	1.01%
	71.45%
	70.43%
	1.02%

	Input traffic 7+8:one inserted in another one
	69.32%
	68.32%
	1.00%
	72.65%
	71.64%
	1.01%

	Input traffic 7+8:random mixed
	67.49%
	66.48%
	1.01%
	71.57%
	70.55%
	1.02%

* The results without 1byte UDC header refer to the results in TR 36.754, which doesn’t consider the 1 byte UDC header.
From the simulation results, it could be seen that the compression efficiency gap between them is 0.1% ~ 1.9%. The Deflate with 1 byte UDC header still shows significant compression efficiency.
Observation 1: 1 byte UDC header brings only a small reduction of compression efficiency.
Observation 2: Deflate with 1 byte UDC header still shows significant compression gain.
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]2.3 Results with static huffman encoding
[bookmark: OLE_LINK78][bookmark: OLE_LINK79]Adaptive selection of dynamic Huffman and static Huffman coding is used in current DEFLATE solution. As known, it would be a little complex and there is dynamic Huffman tree to be transferred in UDC block when dynamic Huffman coding is used. To further reduce the complexity, we try static Huffman coding for all the packets.
If static (fixed) Huffman coding is used, both sides would use the same Huffman tree defined in RFC 1951[3] which is no need to exchange in the packet (see the below highlighted in yellow which copied from RFC 1951).
	3.2.6. Compression with fixed Huffman codes (BTYPE=01)
The Huffman codes for the two alphabets are fixed, and are not represented explicitly in the data.
The Huffman code lengths for the literal/length alphabet are:

Lit Value Bits Codes
--------- ---- -----
0 - 143 8 00110000 through 10111111
144 - 255 9 110010000 through 111111111
256 - 279 7 0000000 through 0010111
280 - 287 8 11000000 through 11000111

And during the compression procedure, the compressor needn’t to create the static Huffman tree and fill the tree into compressed block, which would reduce the process delay much. So static Huffman encoding would reduce the complexity much compared to adaptive Huffman encoding.
Table-3 provides the simulation results of static Huffman encoding. Note that the 1 byte UDC header (as in section 2.2) is considered also.
Table-3 Simulation results with RFC 1951 (with static Huffman encoding)
	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency

	Input traffic 1: FTP data-client-CMCC
	1211
	606
	49.96%
	1211
	606
	49.96%

	Input traffic 2: FTP data-server-CMCC
	1782
	987
	44.61%
	1782
	987
	44.61%

	Input traffic 3: SIP signalling-CMCC UE 1
	51020
	6888
	86.50%
	51020
	6149
	87.95%

	Input traffic 4: SIP signalling-CMCC
	32680
	5298
	83.79%
	32680
	4943
	84.87%

	Input traffic 5: SIP signalling-CMCC
	46688
	6139
	86.85%
	46688
	5487
	88.25%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	13450
	4979
	62.98%
	13450
	4978
	62.99%

	Input traffic 7: Web surfing-CMCC
	2381720
	828805
	65.20%
	2381720
	713901
	70.03%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	1371861
	394337
	71.26%
	1371861
	360064
	73.75%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	2453749
	1004068
	59.08%
	2453749
	1032588
	57.92%

	Input traffic 10: Long period ftp-MTK
	879630
	334169
	62.01%
	879630
	364504
	58.56%

	Input traffic 11: Multiple IP flows-QC
	5319100
	1508809
	71.63%
	5319100
	1393884
	73.79%

	Input traffic 7+8:average mixed
	3753581
	1302194
	65.31%
	3753581
	1121805
	70.11%

	Input traffic 7+8:one inserted in another one
	3753581
	1223095
	67.42%
	3753581
	1073699
	71.40%

	Input traffic 7+8:random mixed
	3753581
	1302491
	65.30%
	3753581
	1117187
	70.24%

Table-4 Performance comparison of adaptive/static Huffman encoding
	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Compression efficiency
	loss
	Compression efficiency
	loss

	
	Adapt Huffman*
	Static Huffman
	
	Adapt Huffman*
	Static Huffman
	

	Input traffic 1: FTP data-client-CMCC
	49.96%
	49.96%
	0.00%
	49.96%
	49.96%
	0.00%

	Input traffic 2: FTP data-server-CMCC
	44.61%
	44.61%
	0.00%
	44.61%
	44.61%
	0.00%

	Input traffic 3: SIP signalling-CMCC UE 1
	86.87%
	86.50%
	0.37%
	88.13%
	87.95%
	0.18%

	Input traffic 4: SIP signalling-CMCC
	84.83%
	83.79%
	1.04%
	85.23%
	84.87%
	0.36%

	Input traffic 5: SIP signalling-CMCC
	87.20%
	86.85%
	0.35%
	88.52%
	88.25%
	0.27%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	64.93%
	62.98%
	1.95%
	64.92%
	62.99%
	1.93%

	Input traffic 7: Web surfing-CMCC
	66.22%
	65.20%
	1.02%
	70.28%
	70.03%
	0.25%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	71.93%
	71.26%
	0.67%
	73.97%
	73.75%
	0.22%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	59.41%
	59.08%
	0.33%
	58.07%
	57.92%
	0.15%

	Input traffic 10: Long period ftp-MTK
	62.01%
	62.01%
	0.00%
	58.56%
	58.56%
	0.00%

	Input traffic 11: Multiple IP flows-QC
	72.08%
	71.63%
	0.45%
	73.92%
	73.79%
	0.13%

	Input traffic 7+8:average mixed
	66.47%
	65.31%
	1.16%
	70.43%
	70.11%
	0.32%

	Input traffic 7+8:one inserted in another one
	68.32%
	67.42%
	0.90%
	71.64%
	71.40%
	0.24%

	Input traffic 7+8:random mixed
	66.48%
	65.30%
	1.18%
	70.55%
	70.24%
	0.31%

* Adaptive case refers to results with 1 byte UDC header as in section 2.2.
From the simulation results, static Huffman could almost perform as good as adaptive Huffman coding for these traffics studied in UDC. Although dynamic Huffman could further reduce the compression encoding, however, most of the uplink traffic packets are small packets, static Huffman coding would bring more benefits because it’s no need to transmit Huffman tree in compressed block compare to dynamic Huffman.
Observation 3: Static Huffman achieves similar compression efficiency as adaptive Huffman does.
Considering observation 1-3 above together, 1 byte UDC header and static Huffman coding could be used in Deflate solution with a very small performance reduction. Where, 1 byte UDC header could make deflate more applicable in PDCP, and static Huffman encoding could decrease the deflate complexity in a large extent.
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]Proposal 1: Capture the detailed 1 byte UDC header format as the typical example in TR.
Proposal 2: Capture the checksum failure handling procedure into TR.
Proposal 3: Capture the new simulation results of Deflate with 1 byte header and static Huffman encoding into TR.
Conclusion
More simulation results of deflate solution are provide in this paper, it is observed that
Observation 1: 1 byte UDC header brings only a small reduction of compression efficiency.
Observation 2: Deflate with 1 byte UDC header still shows significant compression gain.
Observation 3: Static Huffman achieves similar compression efficiency as adaptive Huffman does.
It is proposed that,
Proposal 1: Capture the detailed 1 byte UDC header format as the typical example in TR.
Proposal 2: Capture the checksum failure handling procedure into TR.
Proposal 3: Capture the new simulation results of Deflate with 1 byte header and static Huffman encoding into TR.
If these proposals are agreed, corresponding CR can be found in [4].
Reference
[1]	TR 36.754	Study on UL data compression for E-UTRA.
[2]	R2-1705834	Details of UDC solution 3, CATT.
[3]	RFC 1951	DEFLATE Compressed Data Format Specification.
[4]	R2-1708359	Update of Description and Evaluation Results for Deflate	CATT
[bookmark: _GoBack]

1
R2-1708358
oleObject1.bin
UE

eNB

Reset buffer

Checksum failure

RRCConnectionReconfiguration
Including the checksum failure indication and PDCP SN

image1.emf
...

UDC Block

F3 F0 Checksum F1 F2

image2.emf
UE eNB

RRCConnectionReconfiguration

Including the checksum failure indication and PDCP SN

RRCConnectionReconfigurationComplete

Reset buffer

Checksum failure

reset buffer

UDC continues

Compressed packet

Set the F2 bit to 1

Discard Packets if F2

bit is NOT 1

