3GPP TSG-RAN WG2 Meeting #99

R2-1708296
Berlin, Germany, 21–25 August 2017
Agenda Item:
9.3
Source:
MediaTek Inc., Broadcom
Title:
Evaluation and crosscheck on APDC algorithm
Document for:
Discussion

1 Introduction
In RAN#74, uplink data compression (UDC) SI [1] was approved. In RAN#76 [2], RAN2 was requested to analyze APDC under the condition that additional information on APDC solution be provided by 26.06.2017. Based on the disclosed APDC source code (and related document) [3,4], this contribution contains an analysis of the APDC compressor source code itself, an evaluation of its compression efficiency and whether the results shown in UDC TR [3] are reproducible.
2 APDC source code analysis
Following disclosure of the APDC compressor source code on the RAN2 email reflector, we analyze the compressor design flow in this source code and compare it with the example compressor algorithm proposed in TR 36.754.
The compression flow of the disclosed source code is shown in Figure 2-1. Because UDC is applied on the TCP/IP packets, compressor example source code uses the information in Layer 3(IP) and Layer 4(TCP/UDP) headers to find the PMCR lookback reference. After PMCR compression on the L3/L4 header of the packet, CPCR performs LZ77 compression for the remaining part. When CPCR compression is done, the compressed packet is constructed from the PMCR and CPCR results. For the compressible packets, PPCR also checks if the built APDC header is the same as the header in header memory to further reduce the transmission data.
By comparison, the compressor algorithm provided in TR 36.754 (see Figure 2-2), first finds all matches and mismatches of the input packet in the compression memory. Next, the use of PMCR is decided in Step 2a as shown in Figure 2-2. However, the criterion whether to use PMCR or not is unclear. After PMCR selection, the remaining parts of the compressor are the same.
Observation 1: The compressor flow of the APDC compressor source code provided to RAN2 is different from the one in TR36.754.
[image: image1.png]
Figure 2-1. APDC compressor example source code program flow

[image: image2.emf]Step 2a –PMCR: If decided to use PMCR to

represent the consecutive data block(s) that start

from the first byte of the uncompressed packet,

represent each matched and mismatched data

block using PMCR header metadata (there is at

most one PMCR header); Append mismatched data

blocks to the compressed packet payload in their

original order. See examples.

Start

Step 1a: search for the next

data block of the original

packet in the compression

memory

End

Input: Original Packet

for compression

Intermediate Output:

matched and

mismatched data blocks

Step 0: Push the part of the

packet that is to be compressed

into compression memory

Is the UDC header (excluding

the uncompressed data

portion) for this compressed

packet the same as the

previous packet’s UDC

header?

Yes

Step 3a: set common UDC

common header field “Pkt Action”

to ‘100’. Discard the other UDC

headers that are composed in the

previous steps.

Step 3b: store the

composed UDC headers

into the UDC Header

Memory

No

Output Compressed Packet: one

UDC common header + zero or one

PMCR header + zero or one CPCR

header. One PMCR header can

have multiple PMCR metadata. One

CPCR header can have multiple

CPCR metadata.

Is the data block of

original packet found in

the compression memory?

Yes

No

Step 1c: save

the size and

locations of

matched data

block

Is it the end of the data

length to be compressed

for this packet?

Yes

No

Step 1b: save

the

mismatched

data block

and save its

size

Is compression enabled?

Yes

No

Add UDC common header (1

Octet). Set Pkt Action to ‘000’

Is at least one matched

data block found?

Yes

No

Add UDC common header (1

Octet). Set Pkt Action to ‘001'

Step 2b -CPCR: For the other matched and

mismatched data blocks, represent each

matched and mismatched data block using

CPCR header formats. Append mismatched

data blocks to the compressed packet

payload in their original order. See examples.

Figure 2-2. Example on Compressor Illustration on TR 36.754 [4]
3 APDC performance and comparison vs. TR 36.754

General
This section compares the performance (i.e. compression efficiency) of APDC source code disclosed to RAN2 vs. that reported in TR36.754.

APDC crosscheck in 8K compression memory setting

Compression efficiency
The compression efficiencies of the disclosed APDC source code with 8K compression memory in 11 RAN2 UDC evaluation scenarios are shown in Table 3-1. The results listed in TR 36.754 are also listed in this table for comparison. It can be seen that the compression efficiency difference is up to 3.51%.
	Table 3-1 Comparison of APDC compression efficiency between disclosed source code to RAN2 and TR36.754 with 8K compression memory

	PCAP File #
	PCAP File
	 TR 36.754
	Disclosed
source code
	Gap
(disclosure – TR)

	1
	FTP- Client (CMCC)
	54.75%
	54.34%
	-0.41%

	2
	FTP- Server (CMCC)
	50.39%
	50.34%
	-0.05%

	3
	Online video (CMCC)
	62.04%
	61.00%
	-1.04%

	4
	Long period video (CMCC)
	78.45%
	76.67%
	-1.78%

	5
	SIP UE1(CMCC)
	85.62%
	83.91%
	-1.71%

	6
	SIP UE2 (CMCC)
	82.78%
	80.62%
	-2.16%

	7
	SIP UE3 (CMCC)
	85.95%
	84.20%
	-1.75%

	8
	Web surfing (CMCC)
	67.75%
	64.24%
	-3.51%

	9
	Video data (MediaTek)
	73.98%
	73.47%
	-0.51%

	10
	Long duration FTP (MediaTek)
	75.34%
	75.34%
	-0.00%

	11
	Multiple IP flows (Qualcomm)
	75.33%
	73.35%
	-1.98%

Observation 2: Up to 3.51% compression efficiency difference is found between the disclosed source code and TR36.754. Results in TR36.754 are not reproducible.
Pre-filled compression memory
We further compare the compressed packets in our experiments with those provided in R2-1705613 [5]. We find that some compressed packets exhibit different patterns.
For example, in the FTP client scenario, the first compressed packet contains a CPCR metadata referring to the compression memory of lookback length 2329 starting from which the referred content is “0x00 0x00 0x00 0x00 0x01”. The second compressed packet refers to the memory of lookback length 221 with content “0x00 0x00 0x01 0x01 0x08 0xa0 0x00”. Also, the first and the second decompressed packets are 60 and 52 bytes long respectively. We expect that pre-filled buffer was applied in R2-1705613 [5]. See Appendix.
However, in UDC TR, the compression memory in APDC simulation is claimed to be treated as follows:
“When a DRB is configured with APDC or when APDC compression memory is reset, every octet in the compression memory is reset to 0x00 in both compressor and decompressor.”
Observation 3: APDC simulation results captured in TR36.754 use pre-filled compression memory.

Given the Observations 2 and 3 above:
Proposal 1: Update in TR36.754 the APDC 8K buffer size compression efficiency using the numbers produced by co-sourcing companies in Table 3-1.
APDC cross-check in 32K compression memory setting

TR 36.754 claims that for APDC (direct quote):
“The same results are obtained for setups with 8Kbyte and 32Kbyte compression buffer size.”
Hence, we also try to evaluate APDC compression efficiency with 32K compression memory. However, we found that the current APDC design cannot support 32K compression buffer size. The reasons are as follows:
1. 10-bit PMCR lookback length design restricts PMCR refers to at most the last 210 (=1024) words, where 1 word is 4 bytes. That is, PMCR refers to the last 4Kbyte compression memory.
2. 14-bit CPCR lookback length design restricts CPCR refers to at most the last 214 (=16K) bytes.
However, both 8K and 32K buffer configurations were agreed to be evaluated in UDC SI.
Observation 4: Current APDC design cannot support 32Kbyte compression buffer size for UDC evaluation.
Proposal 2: Capture Observation 4 in TR 36.754.
Therefore, in order to support 32Kbyte compression memory, the disclosed source code was modified below such that 1 additional bit is introduced in the CPCR lookback length field (i.e. from 14-bit to 15-bit). As a result, one CPCR header metadata is 5 bytes long to achieve the byte-aligned. The corresponding APDC compression efficiency with 32K buffer size is shown in Table 3-2.
The above results with 8K buffer size are also listed for comparison. In our experiment, the compression efficiencies of APDC with 8K and 32K buffer size are different. Because the CPCR header metadata overhead in our 32K APDC setting, the result of APDC 32K does not always outperform the 8K result. The 32K buffer size is worthier in APDC only if many matches can be found in the additional former 24K buffer so that the 1 byte CPCR header metadata overhead is overcome.
	Table 3-2 Comparison of APDC compression efficiency with disclosed source code between 8K and 32K compression memory

	PCAP File #
	PCAP File
	8K buffer size

Disclosed source code with 14-bit CPCR lookback
	32K buffer size
Disclosed source code with 14-bit CPCR lookback
(Note1)
	32K buffer size

Disclosed source code with 15-bit CPCR lookback
	Gap
(32k15 – 8k)

	1
	FTP- Client (CMCC)
	54.34%
	N/A (54.34%)
	54.00%
	-0.34%

	2
	FTP- Server (CMCC)
	50.34%
	N/A (50.34%)
	50.06%
	-0.28%

	3
	Online video (CMCC)
	61.00%
	N/A (61.04%)
	59.47%
	-1.53%

	4
	Long period video (CMCC)
	76.67%
	N/A (79.48%)
	78.65%
	+1.98%

	5
	SIP UE1(CMCC)
	83.91%
	N/A (85.21%)
	83.77%
	-0.14%

	6
	SIP UE2 (CMCC)
	80.62%
	N/A (81.48%)
	80.31%
	-0.31%

	7
	SIP UE3 (CMCC)
	84.20%
	N/A (85.71%)
	84.41%
	+0.21%

	8
	Web surfing (CMCC)
	64.24%
	N/A (68.68%)
	67.65%
	+3.41%

	9
	Video data (MediaTek)
	73.47%
	N/A (74.53%)
	74.42%
	+0.95%

	10
	Long duration FTP (MediaTek)
	75.34%
	N/A (75.29%)
	75.27%
	-0.07%

	11
	Multiple IP flows (Qualcomm)
	73.35%
	N/A (75.31%)
	74.36%
	+1.01%

	Note1: The packets compressed by 32K buffer size APDC with 14-bit CPCR lookback cannot be decompressed correctly. We still provide the numbers produced by disclosed APDC source code for reference.

Observation 5: The compression buffer size does impact APDC compression efficiency contrary to the claim in TR36.754.

Observation 6: To support 32K buffer operation, a new CPCR header of APDC algorithm is required.
Proposal 3: Remove in TR 36.754 that “The same results are obtained for setups with 8Kbyte and 32Kbyte compression buffer size.” and indicate that “APDC compression effiency varies as a function of the compression buffer size”.
Proposal 4: R2 discuss whether to capture and how to capture the results of APDC 32K compression efficiency.
Comparison between APDC and Deflate
After performing crosscheck on APDC, we also compare APDC with Deflate and RoHC in terms of compression efficiency in Tables 3-3 and 3-4.

With 8K memory setting:

-
Deflate outperforms APDC and RoHC in 5 cases;

-
RoHC outperforms APDC and Deflate in 4 cases;

-
APDC outperforms RoHC and Deflate in only 2 cases.
With 32K memory setting:

-
Deflate outperforms APDC and RoHC in 6 cases;

-
RoHC outperforms APDC and Deflate in 4 cases;

-
APDC outperforms RoHC and Deflate in only 1 case.
Observation 7: Irrespective of memory setting, APDC is the least efficient algorithm in most cases.

Observation 8: With 8K memory setting, Deflate outperforms APDC in 5 cases against 2.
Observation 9: With 32K memory setting, Deflate outperforms APDC in 6 cases against 1.
Proposal 5: Capture in TR 36.754 the comparison of APDC with Deflate compression efficiency in 8K buffer setting as shown in Table 3-3.

Proposal 6: R2 discuss whether to capture and how to capture the comparison of APDC with Deflate compression efficiency in 32K buffer setting.
	Table 3-3 Comparison of APDC with Deflate compression efficiency in 8K buffer setting.

	PCAP File #
	PCAP File
	APDC
	Deflate
	RoHC

	1
	FTP- Client (CMCC)
	54.34%
	51.69%
	73.3%

	2
	FTP- Server (CMCC)
	50.34%
	46.02%
	59.7%

	3
	Online video (CMCC)
	61.00%
	65.56%
	21.7%

	4
	Long period video (CMCC)
	76.67%
	73.37%
	45.1%

	5
	SIP UE1(CMCC)
	83.91%
	86.99%
	5.4%

	6
	SIP UE2 (CMCC)
	80.62%
	84.94%
	5.1%

	7
	SIP UE3 (CMCC)
	84.20%
	87.31%
	4.4%

	8
	Web surfing (CMCC)
	64.24%
	66.99%
	23.1%

	9
	Video data (MediaTek)
	73.47%
	61.26%
	80.7%

	10
	Long duration FTP (MediaTek)
	75.34%
	63.91%
	83.4%

	11
	Multiple IP flows (Qualcomm)
	73.35%
	73.03%
	40.0%

	Table 3-4 Comparison of APDC with Deflate compression efficiency in 32K buffer setting.

	PCAP File #
	PCAP File
	APDC
	Deflate
	RoHC

	1
	FTP- Client (CMCC)
	54.00%
	51.69%
	73.3%

	2
	FTP- Server (CMCC)
	50.06%
	46.02%
	59.7%

	3
	Online video (CMCC)
	59.47%
	65.55%
	21.7%

	4
	Long period video (CMCC)
	78.65%
	75.41%
	45.1%

	5
	SIP UE1(CMCC)
	83.77%
	88.25%
	5.4%

	6
	SIP UE2 (CMCC)
	80.31%
	85.34%
	5.1%

	7
	SIP UE3 (CMCC)
	84.41%
	88.62%
	4.4%

	8
	Web surfing (CMCC)
	67.65%
	71.04%
	23.1%

	9
	Video data (MediaTek)
	74.42%
	59.92%
	80.7%

	10
	Long duration FTP (MediaTek)
	75.27%
	60.46%
	83.4%

	11
	Multiple IP flows (Qualcomm)
	74.36%
	74.87%
	40.0%

4 Unclear parts in APDC algorithm

Reviewing APDC document and example source code, a number of confusing points can be identified, as listed below:
1.
Checksum computation in the case that PMCR header is present
-
In UDC TR, the checksum computation in this case is defined as follows:
“Checksum contains the sum of 5 bytes starting from the location pointed to by the lookback length minus 8.”

-
However, in the APDC compressor example source code, the checksum is calculated using the 5 bytes starting from the location pointed to by the lookback length plus 8.
2.
The example of compressed data using PMCR header in Table A.4 in UDC TR
-
To the best of our understanding, PMCR is used to refer to match/mismatch pairs in contiguous bytes in compression memory. But Table A.4 in UDC TR shows that the restriction is not needed. APDC document should add the explanation and example to clarify this mechanism.
At least the above inconsistency should be resolved, and we cannot assure that there is no other issue in the document. The incomplete document must cause great IODT efforts, so APDC is not ready for standardization.
Observation 10: APDC document and example code are not sufficient for standardization.
Proposal 7: Capture in TR 36.754 the identified issues listed in Section 4.

Proposal 8: Capture Observation 10 in TR 36.754.
5 Conclusion and Text proposal
Observation 1: The compressor flow of the APDC compressor source code provided to RAN2 is different from the one in TR36.754.

Observation 2: Up to 3.51% compression efficiency difference is found between the disclosed source code and TR36.754. Results in TR36.754 are not reproducible.

Observation 3: APDC simulation results captured in TR36.754 use pre-filled compression memory.

Proposal 1: Proposal 1: Update in TR36.754 the APDC 8K buffer size compression efficiency using the numbers produced by co-sourcing companies in Table 3-1.
Observation 4: Current APDC design cannot support 32Kbyte compression buffer size for UDC evaluation.
Proposal 2: Capture Observation 4 in TR 36.754.
Observation 5: The compression buffer size does impact APDC compression efficiency contrary to the claim in TR36.754.

Observation 6: To support 32K buffer operation, a new CPCR header of APDC algorithm is required.
Proposal 3: Remove in TR 36.754 the statement “The same results are obtained for setups with 8Kbyte and 32Kbyte compression buffer size” in Section 7.2.4.2 and the statement “No compression efficiency variation due to buffer size was observed in UDC solution 4” in Section 7.3, and indicate instead that “APDC compression effiency varies as a function of the compression buffer size”.
Proposal 4: R2 discuss whether to capture and how to capture the results of APDC 32K compression efficiency.
Observation 7: Irrespective of memory setting, APDC is the least efficient algorithm in most cases.

Observation 8: With 8K memory setting, Deflate outperforms APDC in 5 cases against 2.
Observation 9: With 32K memory setting, Deflate outperforms APDC in 6 cases against 1.

Proposal 5: Capture in TR 36.754 the comparison of APDC with Deflate compression efficiency in 8K buffer setting as shown in Table 3-3.

Proposal 6: R2 discuss whether to capture and how to capture the comparison of APDC with Deflate compression efficiency in 32K buffer setting.
Observation 10: APDC document and example code are not sufficient for standardization.
Proposal 7: Capture in TR 36.754 the identified issues listed in Section 4.

Proposal 8: Capture Observation 10 in TR 36.754.
6 Reference

[1]
RP-162541, New SI proposal: Study on UL data compression in LTE
[2]
Draft Meeting Report RAN#76 170608 eom
[3]
R2-1705615, Details on APDC decompression algorithm, Qualcomm
[4]
TR 36.754 V15.0.0 (2017-06), Study on UL_data compression for E-UTRA
[5]
R2-1705613, Updated details on APDC compression and decompression solution, Qualcomm
Appendix – Compressed packets

The tables below identify (in red) the discrepancies in the obtained compressed packets between R2-1705613 and the evaluations made in the present document by the sourcing companies.
	R2-1705613

	42 01 06 84 8c 80 45 00 00 3c 7a f0 40 00 40 06 3b 60 c0 a8 01 b6 c0 a8 01 65 bf 3c 00 15 2a 8c
25 4e 00 00 00 00 a0 02 39 08 84 9a 00 00 02 04 05 b4 04 02 08 0a 00 46 5f be 03 03 07

	5d 60 71 9b 19 09 29 01 01 60 6e 82 34 f1 67 4f da d0 4e 5f 80 10 00 73 84 92 46 5f be 00 8a 57
31

	43 40 62 33 29 29 99 79 f2 66 73 bf 32

	47 40 63 34 19 09 29 a9 12 49 44 f3 55 18 79 77 ff 55 53 45 52 20 61 6e 6f 6e 79 6d 6f 75 73 0d
0a

	49 40 83 b3 19 09 29 79 19 09 12 34 f4 64 5f 95 10 84 92 72

	51 60 63 34 19 09 29 a9 12 42 01 00 80 3b 80 49 f5 4e 18 36 7c 60 00 50 41 53 53 40 6c 6f 63 61
6c 68 6f 73 74 0d 0a

	49 40 94 37 19 09 29 79 19 22 49 1b 3a f6 5c 74 ac 4d 01 04 74 53 59 54 0d 0a

	5b 40 73 ba 29 29 79 19 22 49 1c f7 5b 7a bf 6b f8 05 77 46 45 41

	41 40 74 33 19 09 29 79 19 09 12 49 34 f8 60 80 f8 10 84 92 06 78

	5b 40 62 33 29 29 92 79 f9 5f 4f 16 08 79

	59 40 62 b4 19 09 29 a9 12 42 fa 50 18 53 7a 4f 50 54 53 20 55 54 46 38 20 4f 4e 0d 0a

	5d 40 83 b3 19 09 29 79 19 22 49 39 fb 58 8e 30 61 ab 09 7b 50 57 44 0d 0a

	Evaluation from Sourcing Companies

	20 45 00 00 3c 7a f0 40 00 40 06 3b 60 c0 a8 01 b6 c0 a8 01 65 bf 3c 00 15 2a 8c 25 4e 00 00 00
00 a0 02 39 08 84 9a 00 00 02 04 05 b4 04 02 08 0a 00 46 5f be 00 00 00 00 01 03 03 07

	61 60 71 9b 19 09 29 01 01 e0 1b 82 34 f1 67 4f da d0 4e 5f 80 10 00 73 84 92 00 00 01 01 8a 57
31

	63 40 62 b4 29 29 99 79 19 f2 66 73 bf 32

	67 40 63 34 19 09 29 a9 12 49 44 f3 55 18 79 77 ff 55 53 45 52 20 61 6e 6f 6e 79 6d 6f 75 73 0d
0a

	69 40 83 b3 19 09 29 79 19 09 12 34 f4 64 5f 95 10 84 92 72

	71 60 63 34 19 09 29 a9 12 42 01 00 80 3b 80 49 f5 4e 18 36 7c 60 00 50 41 53 53 40 6c 6f 63 61
6c 68 6f 73 74 0d 0a

	69 40 94 37 19 09 29 79 19 22 49 1b 3a f6 5c 74 ac 4d 01 04 74 53 59 54 0d 0a

	7b 40 73 ba 29 29 79 19 22 49 1c f7 5b 7a bf 6b f8 05 77 46 45 41

	61 40 74 b4 19 09 29 79 19 09 12 49 19 34 f8 60 80 f8 10 84 92 06 78

	7b 40 62 b4 29 29 92 79 19 f9 5f 4f 16 08 79

	79 40 62 b4 19 09 29 a9 12 42 fa 50 18 53 7a 4f 50 54 53 20 55 54 46 38 20 4f 4e 0d 0a

	7d 40 83 b3 19 09 29 79 19 22 49 39 fb 58 8e 30 61 ab 09 7b 50 57 44 0d 0a

1

