Page 1

3GPP TSG-RAN WG2 Meeting #106
R2-1907917
Reno, USA, May 13-17, 2019
Agenda item:
11.7.2.3
Source:
Qualcomm Incorporated

Title:
Principles for Ethernet Header Compression
WID/SID:
WI: Industrial IoT
Document for:
Discussion and Decision

1 Introduction
Work Item on Industrial IoT includes the following objective:
	· Specify Ethernet header compression based on structure-aware algorithm [RAN2].
· Ethernet header compression solution for LTE to be specified once the design principle for NR is agreed. The impacted LTE specifications to be added latest at RAN#85.

Results of a study on Industrial IoT are included in TR 38.825, Section 6.6 for the concluded study in Industrial IoT.
In this paper, we provide some basic principles that RAN2 should discuss and adopt to help define a solution for Header Compression in PDCP.
2 Architecture

RAN2 has already concluded that the header compression is performed by a 3GPP defined protocol. We make the following assumptions as natural consequences of RAN2 decision.

We assume that this compression protocol would be part of the PDCP layer, and primarily reside in the header compression/decompression functions shown in “Figure 4.2.2-1: PDCP layer, functional view”.

[image: image1.emf]Radio Interface (Uu)

UE/NG-RAN NG-RAN/UE

Transmitting

PDCP entity

Ciphering

Header Compression

Receiving

PDCP entity

Transmission buffer:

Sequence numbering

Integrity Protection

Add PDCP header

Header Decompression

Deciphering

Remove PDCP Header

Integrity Verification

Packets associated

to a PDCP SDU

Packets associated

to a PDCP SDU

Packets not

associated to a

PDCP SDU

Packets not

associated to a

PDCP SDU

Routing/Duplication

Reception buffer:

Reordering

Duplicte discarding

Assumption1: PDCP Ethernet header compression utilizes the architecture of header compression/decompression function that already exists in Rel-15 PDCP architecture (Figure 4.2.2-1).
Assumption2: The presence of the 3GPP defined Ethernet header compression function is negotiated and configured following similar principles as the negotiation and configuration of RoHC
Assumption3: The 3GPP defined Ethernet header compression function defines its own compression sub-header, which we refer to as PDCP Ethernet Compression sub-header.
3 High Level Principles for Ethernet Header Compression
3.1 Compression Flow
An Ethernet connection can support a diverse set of applications, source addresses, destination addresses and VLAN tags. Header compression relies on identification of correlated information across headers of different packets. Such correlation is easier to identify once the packets flowing through an Ethernet connection have been classified into flows where headers have high correlation within packets of the flow.

Observation 1a: Header compression benefits from the separation of packets into flows, where packets within a flow have high correlation of the header fields, which enables efficient header compression.

For the receiver to perform decompression, it needs information about the operations used by the transmitter to perform the compression. In RoHC, the terminology used for this information is “Compression Context”, which is expected to be in-sync between the transmitter and receiver.

Observation 1b: For each compression flow, operation of header compression and decompression requires a Compression Context to be in-sync among the transmitter-receiver pair.
Observations 1a and 1b lead to the following proposal:

Proposal 1: Compression protocol for Ethernet should support the concept of a compression flow, with a compression context that is maintained by the transmitter and receiver for each compression flow. The transmitter should label each compressed packet with the compression flow identifier, and the receiver should use the corresponding context to decompress the packet.
3.2 Handling of headers within compression flow
The complexity of the compression scheme depends on the variation patterns of headers within a compression flow.
It should first be noted that the Ethernet header does not contain sequence number, timestamp or other variable fields. This is in contrast with VoIP use case with IP/UDP/RTP packets that include timestamp and packet sequence numbers, that are compressed with a master sequence number with RoHC framework.

Observation2a: Ethernet header does not have any fields that can benefit from sequence number based compression.

If we consider the set of Ethernet packets flowing through to a given UE in an Industrial IoT setting, the packets can correspond to specific flows, with some examples given below
· A control/automation flow between a Controller and a Sensor/Actuator (e.g. a TSN flow)

· A logging or diagnostic flow between a server and a machine

· A management/provisioning flow between a provisioning system and a machine

· A safety flow between a safety panel and an alarm
For each of the examples above, the entire Ethernet header remains constant for packets within a flow.
Observation 2b: Ethernet packets can be grouped into flows, where packets within a flow have identical and unchanging values for all Ethernet header fields.

It was shown during the IIoT study item that benefits for header compression are highest for flows with small packets, such as automation flows. Automation packets also require low latency, making it important to avoid complexity the compressor and decompressor operations.
Observation 2c: Benefits of header compression were shown to be highest for short packets, that are typical for automation flows. Such flows also require low-latency processing, making it important to avoid complex processing.
Proposal 2: Ethernet header compression context for a flow should unambiguously specify the value of all Ethernet header fields, with the transmitter completely removing the Ethernet header and inserting a compression flow identifier, and the receiver reinserting the Ethernet header based on the compression flow identifier.

Note: Proposal 2 rules out partial header compression, i.e. creation of a flow that only compresses a subset of header fields (e.g. only source_address), while allowing for other header fields to be transmitted without compression. This is acceptable because such flexibility is not needed for automation flows which will have a fully predictable header and as noted earlier, which have most potential gain with header compression. Compression of partial fields involves additional complexity for the following reasons:
· Definition of compressed header formats that include some Ethernet header fields and remove other Ethernet header fields, which could have a large number of combinations of included/omitted fields.

· Compressor processing to create the header with partial compression

· Decompressor processing to create the full header based on the received header

3.3 Management of compression context

Header compression context management typically consists of the following procedures

· Context creation

· Context update

· Context repair

· Context removal

With the compression framework outlined by Proposals 1 and 2, it can be seen that there is no need for Context update or repair procedures, because the context for a flow is unchanging during the lifetime of the flow.

The following procedures should suffice:
Context creation: Once a compression flow is identified, the compression context at receiver and sender should be created. The context should specify unambiguously the value of each Ethernet header field.

Context removal: Once it is determined that a certain flow is no longer active, the context can be removed at both receiver and sender, and the compression flow identifier can potentially be reused.

Observation 3: Due to the lack of any dynamic elements in the context, Ethernet header compression context management does not need context repair and context update procedures.

Proposal 3: Ethernet header compression context management should consist of context creation and context removal procedures, and procedures for context repair and context update for a flow are not required.
3.4 Signalling framework for context management
We identify three signalling choices for context management, i.e. the signalling to create and remove compression contexts

1. Signalling via PDCP Data PDU: In this option, the compression sub-header includes additional fields that allow the receiver to determine that a context is being added or removed, and to determine the compression context.

2. Signalling via PDCP Control PDU: In this option, a new PDCP Control PDU is defined for compression context management.

3. Signalling via RRC: In this option, the RRC layer is configures the compression context for individual PDCP instances.

In comparing the options, the following issues should be considered

Efficient processing at transmitter and receiver: Given the likely use of Ethernet for demanding industrial automation scenarios, it is important to simplify the processing of user-plane packets as much as possible. Option ‘1’ with signalling via PDCP Data PDU involves more complex compression sub-header design, and is unfriendly for processing.

Control-User Plane separation at RAN: The RRC solution involves communication between the control-plane and user-plane entities in the RAN. This would require the definition of an interface between the entities. Options ‘1’ and ‘2’ do not require this interface.
Reliability for context management: It is important for the transmitter to know that the context is properly setup at the receiver, before the transmitter starts sending compressed packets. Option ‘1’ with signalling via PDCP Data PDU makes it more complex to design a framework for the receiver to inform the transmitter about context setup success or failure events. Options ‘2’ and ‘3’ make it easier to design for acknowledgement.

Observation 4: Context management via PDCP Control PDU has advantages compared with PDCP Data PDU or RRC based solutions.

Proposal 4: Context management for Ethernet header compression should be performed via PDCP Control PDU.

4 Conclusion

In this paper, we provided some basic principles to help define a solution for Ethernet header compression in PDCP.

We use the following assumptions that we consider a natural consequence of RAN2 decision to do PDCP based Ethernet header compression.
Assumption1: PDCP Ethernet header compression utilizes the architecture of header compression/decompression function that already exists in Rel-15 PDCP architecture (Figure 4.2.2-1)

Assumption2: The presence of the 3GPP defined Ethernet header compression function is negotiated and configured following similar principles as the negotiation and configuration of RoHC

Assumption3: The 3GPP defined Ethernet header compression function defines its own compression sub-header, which we refer to as PDCP Ethernet Compression sub-header.
The following observations and proposals were made.

Observation 1a: Header compression benefits from the separation of packets into flows, where packets within a flow have high correlation of the header fields, which enables efficient header compression.

Observation 1b: For each compression flow, operation of header compression and decompression requires a Compression Context to be in-sync among the transmitter-receiver pair.

Proposal 1: Compression protocol for Ethernet should support the concept of a compression flow, with a compression context that is maintained by the transmitter and receiver for each compression flow. The transmitter should label each compressed packet with the compression flow identifier, and the receiver should use the corresponding context to decompress the packet.
Observation2a: Ethernet header does not have any fields that can benefit from sequence number based compression.

Observation 2b: Ethernet packets can be grouped into flows, where packets within a flow have identical and unchanging values for all Ethernet header fields.

Observation 2c: Benefits of header compression were shown to be highest for short packets, that are typical for automation flows. Such flows also require low-latency processing, making it important to avoid complex processing.
Proposal 2: Ethernet header compression context for a flow should unambiguously specify the value of all Ethernet header fields, with the transmitter completely removing the Ethernet header and inserting a compression flow identifier, and the receiver reinserting the Ethernet header based on the context.

Observation 3: Due to the lack of any dynamic elements in the context, Ethernet header compression context management does not need context repair and context update procedures.

Proposal 3: Ethernet header compression context management should consist of context creation and context removal procedures, and procedures for context repair and context update for a flow are not required.

Observation 4: Context management via PDCP Control PDU has advantages compared with PDCP Data PDU or RRC based solutions.

Proposal 4: Context management for Ethernet header compression should be performed via PDCP Control PDU.
5 References

[1] RP-190728, “WID: Support of NR Industrial Internet of Things (IoT)”
[2] 3GPP TR 38.825, “Study on NR Industrial Internet of Things (IoT)”
_1618318069.vsd

