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Introduction
In RAN1 NR AdHoc #2, the following agreement on the usage of the different base graphs was reached [1]:
Agreement:
· Base graph #1 is used for the initial transmission and subsequent re-transmissions of the same TB when
· CBS > X or code rate of the initial transmission > Y
· Base graph #2 is used for the initial transmission and subsequent re-transmissions of the same TB when
· CBS <= X and code rate of the initial transmission <= Y
· Working assumption : X = 2560 and Y = 0.67
· FFS after PCM decisions if X can be extended to 3840 and/or Y can be extended to 0.75

Furthermore, in the email discussion thread [89-25] following RAN1#89, the following working assumption on the selection of kb and Z was set [2]:
	Working Assumption:
· For a given information block size K, (Kb, Z) are determined as follows, 
         For base graph #1
o    Determine Z: minimum Z value such that Kb∙Z >= K, where Kb = 22. 
o    Once the lift size Z is decided, choose the corresponding labelling matrix from {Set 1, Set 2, …, Set 8} according to the agreed Z set
         For base graph #2
o    If (K>640) 
Kb=10; 
Elseif (K > 560) 
Kb=9; 
Elseif (K > 192) 
Kb=8; 
else
Kb=6;
end                              
o    Determine Z: minimum Z value such that Kb∙Z >= K 
o    Once the lift size Z is decided, choose the corresponding labelling matrix from {Set 1, Set 2, … , Set 8 } according to the agreed Z set.
· The above (Kb, Z) selection rule does not impact the decision on Kmin1 and Kmax2 
· Further optimization on how to determine (Kb, Z)  is possible until RAN1#90.
· FFS how to select PCM




In this contribution, we consider the performance of base graph #2 for code rates above 0.67. The high code rates are achieved through rate matching, i.e. puncturing. The optimal puncturing order for puncturing of bits belonging to the dual-diagonal structure is also considered.
[bookmark: _Ref489952442]Achieving high code rate through rate matching
In this contribution, we consider rate matching of base graph #2, see [3] for base graph and shift coefficient designs, to achieve code rates above 0.67. The rate matching involves puncturing of parity bits that belong to the dual-diagonal structure of the parity bits. 
The submatrix corresponding to the highest code rate of base graph #2 is shown in Table 1. The first  variable nodes correspond to the systematic part of the parity-check matrix, while the last 4 variable nodes correspond to the parity bits. 
[bookmark: _Ref489625128]Table 1: High rate part of base graph #2
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When only the variable nodes corresponding to the high rate part of base graph #2 are transmitted, the maximum code rate  for which the base graph is designed is achieved. For the agreed base graph #2, with 2·Z punctured systematic bits, we have

By puncturing one of the variable nodes corresponding to the shaded dual-diagonal part of base graph #2, the code rate  is achieved, where

The rate matching procedure also includes shortening to adjust the information block length K of the code. If shortening is applied, the code rate achieved by puncturing of dual-diagonal variable nodes is reduced. Given the set of supported shift sizes Z in Table 2 and the working assumption on how to select kb and Z, the amount of shortening for different K can be calculated. Most shortening is needed for small K with small kb. Table 3 shows, for a few values of K in the range of , the relative amount of shortening as well as the code rates  and  achieved by puncturing no or one variable node corresponding to the dual-diagonal part of base graph #2.
[bookmark: _Ref489685627]Table 2: Set of shift sizes supported for base graph #2
	Z
	a

	
	2
	3
	5
	7
	9
	11
	13
	15

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	 
	 

	
	6
	128
	192
	320
	 
	 
	 
	 
	 

	
	7
	256
	384
	 
	 
	 
	 
	 
	 




[bookmark: _Ref490049684]Table 3: Code rates achieved through puncturing of no or one dual-diagonal variable node
	K
	Kb
	Z
	Shortening
	
	

	40
	6
	7
	42.9%
	0.741
	0.851

	48
	6
	8
	40%
	0.75
	0.857

	56
	6
	10
	44%
	0.737
	0.849

	64
	6
	11
	41.8%
	0.744
	0.853

	72
	6
	12
	40%
	0.75
	0.857

	80
	6
	14
	42.9%
	0.741
	0.851

	88
	6
	15
	41.3%
	0.746
	0.854



[bookmark: _Toc489950875][bookmark: _Toc490034200][bookmark: _Toc490034425]From the code rates shown in Table 3 it is obvious that some of the bits corresponding to one of the variable nodes in the dual-diagonal part of base graph #2 must be punctured to achieve a code rate of 0.75 for certain values of K. Puncturing of bits corresponding to a second variable node in the dual-diagonal part is never needed to achieve the code rate 0.75.
[bookmark: _Toc490074907][bookmark: _Toc490132933]To achieve code rate 0.75 using base graph #2, a subset of the bits corresponding to one of the variable nodes in the dual-diagonal part of the base graph may have to be punctured.
Optimized puncturing order
In [4], we showed that optimization of the order in which the dual-diagonal variable nodes were punctured improved the performance at high code rate. We have performed the same exit chart analysis for the agreed LDPC codes [3] and found that the optimal order to puncture the variable nodes corresponding to the dual-diagonal part of base graph #2 is to first puncture the last dual-diagonal variable node and then, if needed, puncture the first.
The calculations in Section 2 show however that puncturing of more than one variable node in the dual-diagonal part is not necessary to reach a code rate of 0.75. Given the code rates  shown in Table 3, implementation of an optimized puncturing order will have no impact on performance for code rates R<0.849, since the optimal puncturing order starts with the last dual-diagonal variable node.
[bookmark: _Toc490034426][bookmark: _Toc490074908][bookmark: _Toc490132934]No reordering of the parity bits associated with the dual-diagonal part of base graph #2 is necessary before writing into the circular buffer.
[bookmark: _Ref489952983]Performance for high code rates
Figure 1 shows the performance of base graph #2 for an information block length K=40 and a range of high code rates. The results show that the performance is fairly good even for very high code rates, e.g. R=0.85, which requires a significant amount of puncturing also within the dual-diagonal part of the base graph. No error floors can be observed.
[image: ]
[bookmark: _Ref489961975]Figure 1: Performance at high code rates for K=40.
To further examine the performance at high code rate, the  required to reach BLER  and  for a range of code rates including code rate 3/4 is shown in Figure 2 and Figure 3. The results show that for information block lengths in the range  bits, base graph #2 has good performance also for the non-optimized code rate of 3/4. 
The results for code rate 3/4 shown here are also available in the accompanying data sheet.
[bookmark: _Toc490074909][bookmark: _Toc490132935]For information block lengths in the range , base graph #2 has good performance also for the non-optimized code rate of 3/4.
[image: ]
[bookmark: _Ref490030912]Figure 2: Performance in terms of  required to reach BLER .
[image: ]
[bookmark: _Ref490030914]Figure 3: Performance in terms of  required to reach BLER .
Figure 4, Figure 5 and Figure 6 show the performance at high code rates for block lengths also covered by base graph #1. If the performance of base graph #1 and base graph #2 is comparable, it may be advantageous to use base graph #2 for code rates up to 0.75 due to the lower decoding complexity. To facilitate a comparison between base graph #1 and base graph #2, we have included the data points corresponding to BLER  and  for rate 3/4 and rate 5/6 for base graph #1 in the figures.
The results for K>512 and R=0.75 show that even though base graph #2 has slightly better performance than base graph #1 at BLER , the performance at BLER  is worse. Since the decoding complexity at this high code rate is low both for base graph #1 and base graph #2, we suggest that base graph #1 is used for all code rates  because of the superior performance. Based on the results and the discussion, we have the following observation and proposal:
[bookmark: _Toc490074910][bookmark: _Toc490132936]For K>512 and R=0.75, base graph #2 has slightly better performance than base graph #1 at BLER , while the performance at BLER  is worse.
[bookmark: _Toc490074943][bookmark: _Toc490074975][bookmark: _Toc490133025]For K<512, where base graph #1 is not optimized, base graph #2 may be used for code rates up to 3/4.

[image: ]
[bookmark: _Ref489961978][bookmark: _Ref490072038]Figure 4: Performance at high code rates for K=528.
[image: ]
[bookmark: _Ref490072070]Figure 5: Performance at high code rates for K=1000.
[image: ]
[bookmark: _Ref490072073][bookmark: _GoBack]Figure 6: Performance at high code rates for K=2560.
[bookmark: _Ref178064866]Conclusion
In this contribution, we made the following observations:
Observation 1 To achieve code rate 0.75 using base graph #2, a subset of the bits corresponding to one of the variable nodes in the dual-diagonal part of the base graph may have to be punctured.
Observation 2 No reordering of the parity bits associated with the dual-diagonal part of base graph #2 is necessary before writing into the circular buffer.
Observation 3 For information block lengths in the range , base graph #2 has good performance also for the non-optimized code rate of 3/4.
Observation 4 For K>512 and R=0.75, base graph #2 has slightly better performance than base graph #1 at BLER , while the performance at BLER  is worse.

Based on the discussion and the observations we have the following proposals:
Proposal 1	For K<512, where base graph #1 is not optimized, base graph #2 may be used for code rates up to 3/4.
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